
JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

 (Approved by AICTE, Affiliated to APJ Abdul Kalam Technological

University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(NBA Accredited)

COURSE MATERIAL

CST 205 OBJECT ORIENTED PROGRAMMING USING JAVA

VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers

and entrepreneurs for the development of the region and the Nation.

MISSION OF THE INSTITUTION

 To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

 To provide high quality education in engineering and technology through innovative

teaching-learning practices, research and consultancy, embedded with professional

ethics.

 To promote intellectual curiosity and thirst for acquiring knowledge through outcome

based education.

 To have partnership with industry and reputed institutions to enhance the employability

skills of the students and pedagogical pursuits.

 To leverage technologies to solve the real life societal problems through community

services.

ABOUT THE DEPARTMENT

 Established in: 2008

 Courses offered: B.Tech in Computer Science and Engineering

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them

with the most conducive environment for quality academic and research oriented

undergraduate education along with moral values committed to build a vibrant nation.

DEPARTMENT MISSION

 Provide a learning environment to develop creativity and problem solving skills in a

professional manner.

 Expose to latest technologies and tools used in the field of computer science.

 Provide a platform to explore the industries to understand the work culture and

expectation of an organization.

 Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

 Develop research interest among students which will impart a better life for the society

and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

 Provide high-quality knowledge in computer science and engineering required for a

computer professional to identify and solve problems in various application domains.

 Persist with the ability in innovative ideas in computer support systems and transmit the

knowledge and skills for research and advanced learning.

 Manifest the motivational capabilities, and turn on a social and economic commitment

to community services.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modelling to complex engineering activities with
an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

COURSE OUTCOMES

SUBJECT CODE: C204

COURSE OUTCOMES

C204.1
Write Java programs using the object oriented concepts - classes, objects, constructors,

data hiding, inheritance and polymorphism.

C204.2
Utilize datatypes, operators, control statements, built in packages & interfaces, Input/

Output Streams and Files in Java to develop programs.

C204.3
Illustrate how robust programs can be written in Java using exception handling

mechanism.

C204.4 Write application programs in Java using multithreading and database connectivity

C204.5
Write Graphical User Interface based application programs by utilizing event

handling features and Swing in Java.

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

 Use fundamental knowledge of mathematics to solve problems using suitable analysis

methods, data structure and algorithms.

 Interpret the basic concepts and methods of computer systems and technical

specifications to provide accurate solutions.

 Apply theoretical and practical proficiency with a wide area of programming

knowledge, design new ideas and innovations towards research.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C204.1 3 3 3 2 3 2 2 - - - - 2

C204.2 3 3 3 2 3 2 2 - - - - 2

C204.3 3 3 3 2 3 2 2 - - - - 2

C204.4 3 3 3 2 3 2 2 - - - - 2

C204.5 3 3 3 2 3 2 2 - - - - 2

C204 3 3 3 2 3 2 2 - - - - 2

CO PSO MAPPING

CO’S PSO1 PSO2 PSO3

C204.1 3 3 3

C204.2 3 3 3

C204.3 3 3 3

C204.4 3 3 3

C204.5 2 3 3

C204 2.8 3 3

Reference Materials

MODULE-1 INTRODUCTION

CHAPTER – 1

Approaches to Software Design

Software

• Software is a collection of instructions that enable the user to
interact with a computer , its hardware or perform tasks

• Without software, most computers would be useless. For
example, without your Internet browser software, you could not
surf the Internet. Without an operating system, the browser could
not run on your computer.

Software & Software Design

Software Design
Software design is a process to transform user requirements into some suitable form, which

helps the programmer in software coding and implementation.

The design process for software systems often has two levels. At the first level the focus is on

deciding which modules are needed for the system on the basis of SRS (Software Requirement

Specification) and how the modules should be interconnected.

Software design is the first step in SDLC (Software Design Life Cycle)

It tries to specify how to fulfil the requirements mentioned in SRS document.

 Examples of system software

Software, Software,

Microsoft PowerPoint , etc.

 Application software's

In function-oriented design, the system is comprised of many
smaller sub-systems known as functions.

These functions are capable of performing significant task in
the system

Function oriented design inherits some properties of
structured design where divide and conquer methodology is
used.

This design mechanism divides the whole system into smaller
functions

Functional Oriented Design (FOD)

These functional modules can share information among themselves by means of

information passing and using information available globally.
 Eg: Banking process

Here withdraw, Deposit, Transfer are functions
and that can be divided in to subfunctions again.

So, in FOD, the entire problem is divided in to
number of functions and those functions are
broken down in to smaller functions and these
smaller functions are converted in to software
modules.

Object Oriented Design (OOD)

OOD is based on Objects and interaction between the objects Interaction between

objects is called message communication.

It involves the designing of Objects, Classes and the relationship between the classes

Consider the previous example of Banking
process.

Here, customer, money and account are
objects

OBJECT

Objects are real-world entities that has their own properties and behavior.

It has physical existence

Eg: person, banks, company, customers etc

CLASS

A class is a blueprint or prototype from which objects are created

A class is a generalized description of an object.

An object is an instance of a class

Relationship between Object & Class

Let’s take Human Being as a class. My name is John, and I am an instance/object of the class

Human Being

Object has a physical existence while a class is just a logical definition.

 This approach is very close to the real-world applications

Encapsulation
The wrapping up of data(variables) and function (methods) into a single unit (called class) is

known as encapsulation.

It is also called "information hiding.
 10

ABSTRACTION

Abstraction means displaying only essential information and hiding the details.

Data abstraction refers to providing only essential information about the data to the

outside world, hiding the background details or implementation.

Consider a real-life example of a man driving a car. The man only knows that pressing the

accelerators will increase the speed of the car or applying brakes will stop the car but he

does not know about how on pressing accelerator the speed is actually increasing, he does

not know about the inner mechanism of the car or the implementation of accelerator,

brakes etc in the car. This is what abstraction is.

POLYMORPHISM
The word polymorphism means having many forms

Key Points of Encapsulation

1

In simple words, we can define polymorphism as the ability of a message to be displayed in

more than one form.

Eg: A person at the same time can have different characteristic. Like a man at the same time is a

father, a husband, an employee. So the same person posses different behavior in different

situations. This is called polymorphism.

An operation may exhibit different behaviors in different instances. The behavior depends

upon the types of data used in the operation.

Inheritance
The capability of a class to derive properties and characteristics from another class is called

Inheritance.

OR

Inheritance is the process by which objects of one class acquired the properties of objects of

another classes

Sub Class : The class that inherits properties from another class

is called Sub class or Derived Class.

Super Class : The class whose properties are inherited by sub class is called Base Class or Super

class.

Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to create a
new class and there is already a class that includes some of the code that we want, we can
derive our new class from the existing class. By doing this, we are reusing the fields and
methods of the existing class.

Eg: Dog, Cat, Cow can be Derived Class of
Animal Base Class.

UML (Unified Modeling Language) is a general-purpose, graphical
modeling language in the field of Software Engineering

UML is used to specify, visualize, construct, and document the
artifacts (major elements) of the software system

UML is a visual language for developing software blue prints
(designs). A blue print or design represents the model.

For example, while constructing buildings, a designer or architect
develops the building blueprints. Similarly, we can also develop
blue prints for a software system.

Unified Modeling Language (UML)

 8

UML is the most commonly and frequently used language for building software system blueprints

UML is not a programming language, it is rather a visual language.

The UML has the following features:

• It is a generalized modeling language.

• It is distinct from other programming languages like C++, Python, etc.

• It is interrelated to object-oriented analysis and design.

• It is used to visualize the workflow of the system.

• It is a pictorial language, used to generate powerful modeling artifacts

 and analysis

Diagrams in UML can be broadly classified as:

 9

CLASS DIAGRAM

The most widely use UML diagram is the class diagram. It is the building block of all object

oriented software systems.

Using class diagrams we can create the static structure of a system by showing system’s classes,

their methods and attributes.

Class diagrams also help us identify relationship between different classes or objects.

There are several software available which can be used online and offline to draw these diagrams

Like Edraw max, lucid chart etc.

 10

Class Notation

A class notation consists of three parts:

Class Name:

• The name of the class appears in the first partition.

Class Attributes:

• Attributes are shown in the second partition.

• The attribute type is shown after the colon.

• Attributes map onto member variables (data members) in code.

Class Operations (Methods):

• Operations are shown in the third partition. They are services the class provides.

• The return type of a method is shown after the colon at the end of the method
signature.

• The return type of method parameters are shown after the colon following the
parameter name. Operations map onto class methods in code

a class .

1. Dependency

• A dependency means the relation between two or more classes in which a change in one may force
changes in the other.

• Dependency indicates that one class depends on another.

• A dashed line with an open arrow

2. Inheritance (or Generalization)

• A generalization helps to connect a subclass to its superclass.

• A sub-class is inherited from its superclass.

• A solid line with a hollow arrowhead that point from the child to the parent class

Fig: Inheritance or Generalization

 . Association

 There is an association between Class1 and Class2

 .

 Many instances

5. Composition

• A special type of aggregation where parts are destroyed when the whole is destroyed.

• Objects of Class2 live and die with Class1.

• Class2 cannot stand by itself.

• A solid line with a filled diamond at the association connected to the class of composite

Multiplicity

• It means, how many objects of each class take part in the relationships

• Exactly one - 1

• Zero or one - 0..1

• Many - 0..* or *

• One or more - 1..*

• Exact Number - e.g. 3..4 or 6

• Or a complex relationship - e.g. 0..1, 3..4, 6.* would mean any number of objects other than 2

or 5

 30

USE CASE MODEL / USE CASE DIAGRAM
The purpose of a use case diagram in UML is to demonstrate the different ways that a user

might interact with a system.

It captures the dynamic behavior of a live system.

a use case diagram can summarize the details of your system's users (also known as actors)

and their interactions with the system.

To build a use case diagram, we will use a set of specialized symbols and connectors

A use case diagram doesn't go into a lot of detail, but it depicts a high-level overview of the

relationship between use cases, actors, and systems.

A use-case model is a model of how different types of users interact with the system to

solve a problem Use case diagram components

• Actors: The users that interact with a system. An actor can be a person, an organization, or an
outside system that interacts with your application or system. They must be external objects that
produce or consume data.

• System: A specific sequence of actions and interactions between actors and the system. A system
may also be referred to as a scenario

• Goals: The end result of most use cases. A successful diagram should describe the activities and
variants used to reach the goal.

Use case diagram symbols and notation

1. Use cases

• Horizontally shaped ovals that represent the different uses that a user might have

• A use case represents a distinct functionality of a system, a component, a package, or a class

3. Associations

• A line between actors and use cases

• In complex diagrams, it is important to know which actors are associated with which use cases.

4. System boundary boxes

• A box that sets a system scope to use cases

• All use cases outside the box would be considered outside the scope of that system.

5. Packages

• A UML shape that allows you to put different elements into groups

• Just as with component diagrams, these groupings are represented as file folders.

purposes of use case diagram

Used to gather the requirements of a system.

Used to get an outside view of a system.

Identify the external and internal factors influencing the system. Show the interaction among

the requirements and actors

The time to use the <<include>> relationship is

INTERACTION DIAGRAM
INTERACTION DIAGRAMS are used in UML to establish communication between objects

Interaction diagrams mostly focus on message passing and how these messages make up one

functionality of a system

The critical component in an interaction diagram is lifeline and messages.

 Interaction diagrams capture the dynamic behavior of any system

The details of interaction can be shown using several notations such as sequence diagram,

timing diagram, collaboration diagram.

 42

Purpose of an Interaction Diagram

• To capture the dynamic behavior of a system.

• To describe the message flow in the system.

• To describe the structural organization of the objects.

• To describe the interaction among objects.

• Interaction diagram visualizes the communication and sequence of message passing in the
system.

• Interaction diagram represents the ordered sequence of interactions within a system.

• Interaction diagrams can be used to explain the architecture of an object-oriented system.

Different types of Interaction Diagrams

1. Sequence diagram

• Purpose - To visualize the sequence of a message flow in the system

• Shows the interaction between two lifelines

2. Collaboration diagram

• Also called as a communication diagram

• Shows how various lifelines in the system connects.

3. Timing diagram

• Focus on the instance at which a message is sent from one object to another object.

• In a sequence diagram, a lifeline is represented by a vertical bar.

• A lifeline represents an individual participant in a sequence diagram

• A lifeline will usually have a rectangle containing its object name

• A message flow between two or more objects is represented using a vertical dotted line

which extends across the bottom of the page.

• In a sequence diagram, different types of messages and operators are used

• In a sequence diagram, iteration and branching are also used. 47

Benefits of a Sequence Diagram

• Sequence diagrams are used to explore any real application or a system.

• Sequence diagrams are used to represent message flow from one object to another

object.

• Sequence diagrams are easier to maintain.

• Sequence diagrams are easier to generate.

• Sequence diagrams can be easily updated according to the changes within a system.

• Sequence diagram allows reverse as well as forward engineering.

 50

Drawbacks of a sequence diagram

• Sequence diagrams can become complex when too many lifelines are involved in the

system.

• If the order of message sequence is changed, then incorrect results are produced.

• Each sequence needs to be represented using different message notation, which can be

a little complex.

• The type of message decides the type of sequence inside the diagram

 51

As per Object-Oriented Programming (OOPs), an object entity has various attributes

associated with it.

Usually, there are multiple objects present inside an objectoriented system where each

object can be associated with any other object inside the system

Collaboration Diagrams are used to explore the architecture of objects inside the system.

The message flow between the objects can be represented using a collaboration diagram.

 53

The above collaboration diagram represents a student information management system.

The flow of communication in the above diagram is given by,

• A student requests a login through the login system.

• An authentication mechanism of software checks the request.

• If a student entry exists in the database, then the access is allowed; otherwise, an error is

returned.

Collaboration Diagram Example

 55

Benefits of Collaboration Diagram

• It is also called as a communication diagram.

• It emphasizes the structural aspects of an interaction diagram how lifeline connects.

• Its syntax is similar to that of sequence diagram except that lifeline don't have tails.

• Messages passed over sequencing is indicated by numbering each message hierarchically.

• It allows you to focus on the elements rather than focusing on the message flow as described

in the sequence diagram.

• Sequence diagrams can be easily converted into a collaboration diagram as collaboration

diagrams are not very expressive.
 56

Drawbacks of a Collaboration Diagram

• Collaboration diagrams can become complex when too many objects are present within the

system.

• It is hard to explore each object inside the system.

• Collaboration diagrams are time consuming.

• The object is destroyed after the termination of a program.

• The state of an object changes momentarily, which makes it difficult to keep track of every

single change the occurs within an object of a system.

 57

In the above diagram, first, the software passes through the requirements phase then the

design and later the development phase.

The output of the previous phase at that given instance of time is given to the second

phase as an input

Thus, the timing diagram can be used to describe SDLC (Software Development Life Cycle)

in UML.

 59

How to draw a Timing Diagram

Benefits of a Timing Diagram

• Timing diagrams are used to represent the state of an object at a particular instance of time.

• Timing diagram allows reverse as well as forward engineering.

• Timing diagram can be used to keep track of every change inside the system.

Drawbacks of a Timing Diagram

• Timing diagrams are difficult to understand.

• Timing diagrams are difficult to maintain.

 60

ACTIVITY DIAGRAM
ACTIVITY DIAGRAM is basically a flowchart to represent the flow from one activity to another

activity.

The activity can be described as an operation of the system

 The basic purpose of activity diagrams is to capture the dynamic behavior of the system

It is also called object-oriented flowchart

Activity diagrams are not only used for visualizing the dynamic nature of a system, but they

are also used to construct the executable system by using forward and reverse engineering

techniques.

 61

Basic components of an activity diagram

• Action: A step in the activity wherein the users or software perform a given task.

• Decision node: A conditional branch in the flow that is represented by a diamond. It includes

a single input and two or more outputs.

• Control flows: Another name for the connectors that show the flow between steps in the

diagram.

• Start node: Symbolizes the beginning of the activity. The start node is represented by a black

circle.

• End node: Represents the final step in the activity. The end node is represented by an

outlined black circle.

 62

Activity diagram symbols

• Start symbol - Represents the beginning of a process or workflow in an activity diagram.

• Activity symbol - Indicates the activities that make up a modeled process. These symbols, which
include short descriptions within the shape, are the main building blocks of an activity diagram.

• Connector symbol - Shows the directional flow, or control flow, of the activity.

 63

• Joint symbol / Synchronization bar - Combines two concurrent activities and re-introduces them
to a flow where only one activity occurs at a time. Represented with a thick vertical or horizontal
line.

• Fork symbol - Splits a single activity flow into two concurrent activities. Symbolized with multiple
arrowed lines from a join.

• Decision symbol - Represents a decision and always has at least two paths branching out with
condition text.

 64

• Note symbol - Allows the diagram creators or collaborators to communicate additional messages
that don't fit within the diagram itself. Leave notes for added clarity and specification.

• Send signal symbol - Indicates that a signal is being sent to a receiving activity

• Receive signal symbol - Demonstrates the acceptance of an event. After the event is received, the
flow that comes from this action is completed.

 65

• Flow final symbol - Represents the end of a specific process flow. This symbol shouldn’t represent
the end of all flows in an activity. The flow final symbol should be placed at the end of a single
activity flow.

• Condition text - Placed next to a decision marker to let you know under what condition an activity
flow should split off in that direction

• End symbol - Marks the end state of an activity and represents the completion of all flows of a
process.

 66

STATE CHART DIAGRAM

• State chart diagram is used to capture the dynamic aspect of a system

• An object goes through various states during its lifespan. The lifespan of an object

remains until the program is terminated. The object goes from multiple states depending

upon the event that occurs within the object.

• Each state represents some unique information about the object.

• State chart diagram visualizes the flow of execution from one state to another state of

an object.

• It represents the state of an object from the creation of an object until the object is

destroyed or terminated.
 69

• The primary purpose of a state chart diagram is to model interactive systems and define each
and every state of an object.

• State chart diagrams are also referred to as State machines and state diagrams.

• A state machine consists of states, linked by transitions. A state is a condition of an object in
which it performs some activity or waits for an event

Simple State Machine Diagram Notation
 70

• Initial state - The initial state symbol is used to indicate the beginning of a state machine

diagram.

• Final state - This symbol is used to indicate the end of a state machine diagram.

• Decision box - It contains a condition. Depending upon the result of an evaluated guard
condition, a new path is taken for program execution.

• Transition - A transition is a change in one state into another state which is occurred

because of some event. A transition causes a change in the state of an object.

 72

• State box

States represent situations during the life of an object.

It is denoted using a rectangle with round corners.

The name of a state is written inside the rounded rectangle.

 A state can be either active or inactive.

When a state is in the working mode, it is active, as soon as it stops executing and transits into
another state, the previous state

becomes inactive, and the current state becomes active.
 73

Types of State

Simple state

• They do not have any sub state.

Composite state

• These types of states can have one or more than

one sub state.

• A composite state with two or more sub states is called an orthogonal state.

Submachine state

• These states are semantically equal to the composite states • Unlike the composite state, we

can reuse the submachine states.

 74

University

state

Diagram

• The
composite
state

“Enrollment” is made up of various sub states that will lead
students through the enrollment process.

• Once the student has enrolled, they will proceed to “Being taught”

and finally to “Final exams.”

 75

JAVA

• Java is a powerful general-purpose , Object Oriented programming language developed by Sun
Micro System of USA in 1991.

• Development team members are James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan

• First name of Java is “Oak,” but was renamed “Java” in 1995.

• Java derives much of its character from C and C++.

• Java Changed the Internet by simplifying web programming

• Java innovated a new type of networked program called the applet 2

MODULE 1

CHAPTER 2

INTRODUCTION TO JAVA

 1

 JAVA RUNTIME ENVIRONMENT (JRE)

• A software program needs an environment to run .

• The runtime environment loads class files and ensures there is access to memory and other

system resources to run them.

• Java Runtime Environment provides the minimum requirements for executing a Java application
programs.

• JRE is an installation package which provides environment to only run(not develop) the java

program(or application)onto your machine.

• JRE is only used by them who only wants to run the Java Programs

i.e. end users of your system. JRE can be view as a subset of JDK.
 4

 JAVA DEVELOPMENT KIT (JDK)

• The Java Development Kit (JDK) is a software development environment used for developing

and executing Java applications and applets

• It includes the Java Runtime Environment (JRE), an interpreter/loader (Java), a compiler

(javac), an archiver (jar), a documentation generator (Javadoc) and other tools needed in Java

development.

• JDK is only used by Java Developers.

 5

 JAVA VIRTUAL MACHINE (JVM)

• JVM is a program which provides the runtime environment to execute Java programs. Java

programs cannot run if a supporting JVM is not available.

• JVM is a virtual machine that resides in the real machine (your computer) and the machine

language for JVM is byte code.

• The Java compiler generate byte code for JVM rather than different machine code for each

type of machine.

• JVM executes the byte code generated by compiler and produce output.

• JVM is the one that makes java platform independent.

 7

• The primary function of JVM is to execute the byte code produced by compiler

• The JVM doesn’t understand Java source code, that’s why we need to have javac compiler

• Java compiler (javac) compiles *.java files to obtain *.class files that contain the byte codes

understood by the JVM.

• JVM makes java portable (write once, run anywhere).

• Each operating system has different JVM, however the output they produce after execution of

byte code is same across all operating systems.

8

 BYTE CODE

• Java byte code is the instruction set for the Java Virtual Machine

• It is the machine code in the form of a .class file.

• Byte code is a machine independent code

• It is not completely a compiled code but it is an intermediate code somewhere in the middle

which is later interpreted and executed by JVM.

• Byte code is a machine code for JVM.

• Byte code implementation makes Java a platform- Independent language.

10

JAVA COMPILER

• Java is compiled language. But it is very different from traditional compiling in the way that

after compilation source code is converted to byte code.

•Javac is the most popular Java compiler

• Java has a virtual machine called JVM which then converts byte code to target code of machine

on which it is run.

• JVM performs like an interpreter. It doesn’t do it alone, though. It has its own compiler to

convert the byte code to machine code. This compiler is called Just In Time or JIT compiler.

12

11

JAVA APPLET

• An applet is a special kind of Java program that is designed to be transmitted over the Internet

and automatically executed by a Java-compatible web browser

• It runs inside the web browser and works at client side

• Applets are used to make the web site more dynamic and entertaining

• Applets are not stand-alone programs. Instead, they run within either a web browser or an

applet viewer. JDK provides a standard applet viewer tool called applet viewer.

• In general, execution of an applet does not begin at main() method.

 13

14

JAVA BUZZWORDS

Simple

• It’s simple and easy to learn if you already know the basic concepts of Object Oriented Programming.

• C++ programmer can move to JAVA with very little effort to learn.

• Java syntax is based on C++

• Java has removed many complicated and rarely-used features, for example, explicit pointers, operator
overloading, etc.

 16

Object oriented

• Java is true object oriented language. Everything in Java is an object.

• All program code and data reside within objects and classes.

• Java comes with an extensive set of classes, arranged in packages that can be used in our

programs through inheritance.

Distributed

• Java is designed for distributed environment of the Internet. Its used for creating applications on

networks

15

• Java enables multiple programmers at multiple remote locations to collaborate and work

together on a single project.

 17

Compiled and Interpreted

• Usually a computer language is either compiled or Interpreted. Java combines both this

approach and makes it a two-stage system.

• Compiled : Java enables creation of a cross platform programs by compiling into an

intermediate representation called Java Byte code.

• Interpreted : Byte code is then interpreted, which generates machine code that can be directly

executed by the machine that provides a Java Virtual machine.

 18

Robust

• It provides many features that make the program execute reliably in variety of environments.

• Java is a strictly typed language. It checks code both at compile time and runtime.

• Java takes care of all memory management problems with garbage-collection.

• Java, with the help of exception handling captures all types of serious errors and eliminates any

risk of crashing the system.

 19

Secure

• Java provides a “firewall” between a networked application and your computer.

• When a Java Compatible Web browser is used, downloading can be done safely without fear of

viral infection or malicious intent.

• Java achieves this protection by confining a Java program to the java execution environment and

not allowing it to access other parts of the computer.

Architecture Neutral

• Java language and Java Virtual Machine helped in achieving the goal of “write once; run

anywhere, any time, forever.”

• Changes and upgrades in operating systems, processors and system resources will not force any

changes in Java Programs.

 20

Portable

• Java is portable because it facilitates you to carry the Java byte code to any platform. It doesn't

require any implementation.

• Java Provides a way to download programs dynamically to all the various types of platforms

connected to the Internet.

High Performance

• Java performance is high because of the use of byte code.

• The byte code can be easily translated into native machine code.

 21

Multithreaded

• Multithreaded Programs handled multiple tasks simultaneously, which was helpful in creating

interactive, networked programs.

• Java run-time system comes with tools that support multiprocess synchronization used to

construct smoothly interactive systems

Dynamic

• Java is capable of linking in new class libraries, methods, and objects.

• It supports functions from native languages (the functions written in other languages such as C

and C++).

• It supports dynamic loading of classes. It means classes are loaded on demand
 22

23

Documentation Section

• You can write a comment in this section. It helps to understand the code. These are optional

• It is used to improve the readability of the program.

• The compiler ignores these comments during the time of execution

• There are three types of comments that Java supports

Single line Comment //This is single line comment Multi-line Comment /*

this is multiline comment. and support multiple lines*/

Documentation Comment /** this is documentation cmnt*/

 24

Package Statement

• We can create a package with any name. A package is a group of classes that are defined by a
name.

• That is, if you want to declare many classes within one element, then you can declare it
within a package

• It is an optional part of the program, i.e., if you do not want to declare any package, then
there will be no problem with it, and you will not get any errors.

• Package is declared as: package package_name;

Eg: package mypackage;

 25

Import Statement

• If you want to use a class of another package, then you can do this by importing it directly
into your program.

• Many predefined classes are stored in packages in Java

• We can import a specific class or classes in an import statement.

Examples: import java.util.Date; //imports the date class

 import java.applet.*; /*imports all the classes from the java

applet package*/

 26

Interface Statement

• This section is used to specify an interface in Java

• Interfaces are like a class that includes a group of method declarations

• It's an optional section and can be used when programmers want to implement multiple

inheritances within a program.

Class Definition

• A Java program may contain several class definitions.

• Classes are the main and essential elements of any Java program.

• A class is a collection of variables and methods

 27

Main Method Class

• The main method is from where the execution actually starts and follows the order specified for
the following statements

• Every Java stand-alone program requires the main method as the starting point of the program.

• This is an essential part of a Java program.

• There may be many classes in a Java program, and only one class defines the main method

• Methods contain data type declaration and executable statements.

 28

A simple java program to print hello world

public class Hello

{

//main method declaration public static void main(String[] args)

{

System.out.println("hello world");

}

}

 29

public class Hello - This creates a class called Hello. We should make sure that the class name
starts with a capital letter, and the public word means it is accessible from any other classes.

Braces - The curly brackets are used to group all the commands together

public static void main

• When the main method is declared public, it means that it can be used outside of this class as
well.

• The word static means that we want to access a method without making its objects

• The word void indicates that it does not return any value. The main is declared as void because it
does not return any value.

• main is a method; this is a starting point of a Java program. 30

String[] args
It is an array where each element is a string, which is named as args. If you run the Java code

through a console, you can pass the input parameter. The main() takes it as an input.

System.out.println();

• This statement is used to print text on the screen as output

• system is a predefined class, and out is an object of the PrintWriter class defined in the system

• The method println prints the text on the screen with a new line.

• We can also use print() method instead of println() method. All Java statement ends with a

semicolon.

 31

Garbage Collection in Java (A

process of releasing unused memory)

• When JVM starts up, it creates a heap area which is known as runtime data area. This is where all
the objects (instances of class) are stored

• Since this area is limited, it is required to manage this area efficiently by removing the objects
that are no longer in use.

• The process of removing unused objects from heap memory is known as Garbage collection and
this is a part of memory management in Java.

• Languages like C/C++ don’t support automatic garbage collection, however in java, the garbage
collection is automatic.

 32

• In java, garbage means unreferenced objects.

• Main objective of Garbage Collector is to free heap memory by
destroying unreachable objects.

33

• Unreachable objects : An object is said to be unreachable iff it doesn’t
contain any reference to it.

• Eligibility for garbage collection : An object is said to be eligible for
GC(garbage collection) iff it is unreachable.

• finalize() method – This method is invoked each time before the object
is garbage collected and it perform cleanup processing.

• The Garbage collector of JVM collects only those objects that are
created by new keyword. So if we have created any object without
new, we can use finalize method to perform cleanup processing

 34

Request for Garbage Collection

• We can request to JVM for garbage collection however, it is upto the JVM when to start the

garbage collector.

• Java gc() method is used to call garbage collector explicitly.

• However gc() method does not guarantee that JVM will perform the garbage collection.

• It only request the JVM for garbage collection. This method is present in System and Runtime

class.

 35

Java Lexical Issues (Java Tokens)

TOKENS

• Java Tokens are the smallest individual building block or smallest unit of a Java program

• Java program is a collection of different types of tokens, comments, and white spaces.

 36

Keywords

• A keyword is a reserved word. You cannot use it as a variable name, constant name etc.

37

• The meaning of the keywords has already been described to the java compiler. These meaning

cannot be changed.

• Thus, the keywords cannot be used as variable names because that would try to change the
existing meaning of the keyword, which is not allowed.

• Java language has reserved 50 words as keywords 38

Identifiers

• Identifiers are the names of variables, methods, classes, packages and
interfaces

• Identifier must follow some rules.

All identifiers must start with either a letter(a to z or A to Z) or
currency character($) or an underscore.

They must not begin with a digit

After the first character, an identifier can have any combination of
characters.

A Java keywords cannot be used as an identifier.

Identifiers in Java are case sensitive, foo and Foo are two different
identifiers.

They can be any length Eg: int a; char name;

40

 39

41

 String

• In java, string is basically an object that represents sequence of char values.

• An array of characters works same as java string.

Eg: char[] ch = {'a','t','n','y','l','a'};

String s = "atnyla";

• Java String class provides a lot of methods to perform operations on string such as
 compare(), concat(), equals(), split(), length(), replace(), compareTo(),
intern(), substring() etc.

 43

 100

String literal :

42

Operators

• An operator is a symbol that takes one or more arguments and operates on them to produce a

result.

• Unary Operator

• Arithmetic Operator

shift OperatorBrackets[] : Opening and closing brackets are used as array
element reference. These indicate single and multidimensional
subscripts. Parentheses() : These special symbols are used to indicate
function calls and function parameters.

Braces{} : These opening and ending curly braces mark the start and
end of a block of code containing more than one executable statement.

semicolon ; : It is used to separate more than one statements like in for
loop is separates initialization, condition, and increment.

comma , : It is an operator that essentially invokes something called an
initialization list. asterisk * : It is used for multiplication. assignment
operator = : It is used to assign values.

Period . : Used to separate package names from subpackages and

classes

 45

44

• Relational Operator

• Bitwise Operator

• Logical Operator

• Ternary Operator

• Assignment Operator

 46

Whitespace

• Java is a free-form language. This means that you do not need to follow any special indentation
rules

• White space in Java is used to separate tokens in the source file. It is also used to improve

readability of the source code. Eg: int i = 0;

• White spaces are required in some places. For example between the int keyword and the
variable name.

• In java whitespace is a space, tab, or newline

 47

values.

 Primitive Data Types are predefined and available within the Java

 long

during Java program execution.

 . Variable Declaration

 . Variable Declaration

 int num = 45.66;

Java Type Casting or Type Conversion

Type casting is when you assign a value of one primitive data type to another type.

In Java, there are two types of casting:

1. Widening Casting (automatically) – converting a smaller type to a larger type size
(called Type Conversion) byte -> short -> char -> int -> long -> float -> double

10

11

Types of variables

2. Narrowing Casting (manually) – converting a larger type to a smaller size type (called

Type Casting) double -> float -> long -> int -> char -> short -> byte

12

Truncation
when a floating-point value is assigned to an integer type: truncation takes place, As you know,

integers do not have fractional components

Thus, when a floating-point value is assigned to an integer type, the fractional component is lost.

For example, if the value 45.12 is assigned to an integer, the resulting value will simply be 45. The

0.12 will have been truncated.

No automatic conversions from the numeric types to char or boolean. Also, char and boolean are

not compatible with each other.

14

OPERATORS

An operator is a symbol that tells the computer to perform certain mathematical or logical
manipulation.

Java operators can be divided into following categories:

• Arithmetic Operators

• Relational Operators

• Bitwise Operators

• Logical Operators

• Assignment Operators

• conditional operator (Ternary)
 16

 15

18

11

17

20

19

22

21

24

23

26

25

28

27

30

29

32

31

34

33

SELECTION STATEMENTS
Selection statements allow your program to choose different paths of execution based upon

the outcome of an expression or the state of a variable.

Also called decision making statements

Java supports various selection statements, like if, if-else and switch

There are various types of if statement in java.

if statement

if-else statement

nested if statement

if-else-if ladder
 35

36

38

37

39 41

 40

 if else if ladder

Syntax

if (condition) {

// block of code to be executed if the condition is true

} else if
(condition) {

// block of code to be executed if the condition is true

}
else {

// block of code to be executed if the condition is true
}

 42

43

 switch case

The if statement in java, makes selections based on a single true or false condition. But switch
case have multiple choice for selection of the statements

It is like if-else-if ladder statement How to Java switch

works:

• Matching each expression with case

• Once it match, execute all case from where it matched.

• Use break to exit from switch

• Use default when expression does not match with any case 45

44

Why break is necessary in switch statement ?

• The break statement is used inside the switch to terminate a statement sequence.

• When a break statement is encountered, execution branches to the first line of code that follows the
entire switch statement

46

• This has the effect of jumping out of the switch.

• The break statement is optional. If you omit the break, execution will continue on into the next

case. 48

 47

49

Iteration Statements (Loop)

• A loop can be used to tell a program to execute statements repeatedly

• A loop repeatedly executes the same set of instructions until a termination condition is met.

 50

 While Loop

In while loop first checks the condition if the condition is true then control goes inside the loop
body otherwise goes outside of the body.

Syntax while (condition)

{

// code block to be executed

}

 51

52

53

54

55

 do...while loop

 A do while loop is a control flow statement that executes a block of code at least once, and then
repeatedly executes the block, or not, depending on a given condition at the end of the block (in
while).

Syntax do {

// code block to be executed

} while (condition);

 57

56

58

59

 for loop

For Loop is used to execute set of statements repeatedly until the condition is true.

Syntax for (initialization; condition; increment/decrement)

{

// code block to be executed

}

Initialization : It executes at once.

Condition : This check until get true.

Increment/Decrement: This is for increment or decrement.

 61

60

62

63

 For-each or Enhanced For Loop

 The for-each loop is used to traverse array or collection in java. It is easier to use than simple for

loop because we don't need to increment value and use subscript notation.

Syntax for (type variableName :

arrayName)

{

// code block to be executed

}

 64

65

Labeled For Loop

According to nested loop, if we put break statement in inner loop,
compiler will jump out from inner loop and continue the outer loop
again.

What if we need to jump out from the outer loop using break
statement given insideinner loop? The answer is, we should
define label along with colon(:) sign before loop. Syntax labelname:

for(initialization; condition; increment/decrement)

{

//code to be executed

}

 66

67

68

69

Jump Statements

 Java Break Statement
The Java break statement is used to break loop or switch statement

 It breaks the current flow of the program at specified condition

When a break statement is encountered inside a loop, the loop is immediately terminated and

the program control resumes at the next statement following the loop.

In case of inner loop, it breaks only inner loop.

70

71

72

73

 Java Continue Statement
The Java continue statement is used to continue the loop

The continue statement is used in loop control structure when you need to jump to the next iteration

of the loop immediately

It continues the current flow of the program and skips the remaining code at the specified condition.

 In case of an inner loop, it continues the inner loop only.

 75

74

76

77

78

79

ARRAY

• An array is a collection of similar data types.

• Java array is an object which contains elements of a similar data type.

• The elements of an array are stored in a contiguous memory location

• the size of an array is fixed and cannot increase to accommodate more elements

• It is also known as static data structure because size of an array must be specified at the time of its
declaration.

• Array in Java is index-based, the first element of the array is stored at the 0th index

80

Disadvantage of Java Array

• Size Limit: We can store the only fixed size of elements in the array. It doesn't grow its size at
runtime. To solve this problem, collection framework is used in java. Features of Array

• It is always indexed. The index begins from 0.

 which is not

81

• It is a collection of similar data types.

• It occupies a contiguous memory location. Types of Java Array

• Single Dimensional Array

• Multidimensional Array

82

 Array Declaration

 int[] arr;

83

 operator is used to initializing an array.

 double[10];

84

System.out.println("Element at 4th place" + arr[3]);

System.out.println(cars.length);

85

86

87

88

89

 Two Dimensional array
 Array Declaration

90

91

92

93

 string

char values

94

95

96

 Finding a Character in a String

occurrence of a specified text in a string (including whitespace)

97

98

 concat()

99

 Special Characters

 Because strings within

100

 We are the so-called "Vikings" from the north.

101

1020

102

1020

103

 1

CHAPTER 2

OBJECT ORIENTED PROGRAMMING IN

JAVA

programming.

of a class.

MODULE 2

 Create a Class

 You can create multiple objects of one class

Using Multiple Classes

• We can also create an object of a class and access it in another class.

• This is often used for better organization of classes

• One class has all the attributes and methods, while the other class holds the main() method (code to

be executed).

• Remember that the name of the java file should match the class name.

• In the following example, we have created two files in the same directory/folder:

MyClass.java

OtherClass.java

101

Create a class called "MyClass" with two attributes x and y

 Accessing Attributes

40

25

 The final keyword is useful when we want a variable to always

store the same value, like PI (3.14159...)

myObj1 unchanged

Remember that..

• The dot (.) is used to access the object's attributes and methods.

• To call a method in Java, write the method name followed by a set of parentheses (), followed by a

semicolon (;) Using Multiple Classes

• It is a good practice to create an object of a class and access it in another class.

• Remember that the name of the java file should match the class name. In this example, we have

created two files in the same directory:

Car.java

OtherClass.java

Syntax of default constructor:

<class_name>(){}

In the following example, we are creating the no-argument
constructor in the Bike class. It will be invoked at the time of object creation.

Output

Bike is created

have a return type (like void).

 All classes have constructors by default

 , multiple

polymorphism.

By changing number of arguments

 method call itself.

THIS KEYWORD
There can be a lot of usage of java this keyword. In java, this is a reference variable that refers to

the current object. Usage of java this keyword

• this can be used to refer current class instance variable.

• this can be used to invoke current class method (implicitly)

• this() can be used to invoke current class constructor.

• this can be passed as an argument in the method call.

• this can be passed as argument in the constructor call.

• It is better approach to use meaningful names for variables. So we use same name for instance
variables and parameters in real time, and always use this keyword.

 this: to invoke current class method

• You may invoke the method of the current class by using the this keyword.

• If you don't use the this keyword, compiler automatically adds this keyword while invoking the

method

Command-Line Arguments

• Sometimes we want to pass information into a program when we run it. This is accomplished by

passing command-line arguments to main().

• The main method can receive string arguments from the command line

• To access the command-line arguments inside a Java program is quite easy— they are stored as

strings in a String array passed to the args parameter of main().

• The first command-line argument is stored at args[0], the second at args[1], and so on.

INHERITANCE IN JAVA

• Inheritance in Java is a mechanism in which one object acquires all the properties and behaviors of
a parent object.

• The idea behind inheritance in Java is that you can create new classes that are built upon existing
classes.

• When you inherit from an existing class, you can reuse methods and attributes of the parent class.

Moreover, you can add new methods and attributes in your current class also

• Inheritance represents the IS-A relationship which is also known as a parent-child relationship.

Terms used in Inheritance

Class: A class is a template or blueprint from which objects are created.

Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a derived class,

extended class, or child class.

Super Class/Parent Class: Superclass is the class from where a subclass inherits the features. It is also

called a base class or a parent class.

Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse the

attributes and methods of the existing class when you create a new class. We can use the same

attributes and methods already defined in the previous class.

 3

Access Modifiers - There are four types of Java access modifiers:

Private: The access level of a private modifier is only within the class. It cannot be accessed from

outside the class.

Default: The access level of a default modifier is only within the package. It cannot be accessed from

outside the package. If you do not specify any access level, it will be the default.

Protected: The access level of a protected modifier is within the package and outside the package

through child class. If you do not make the child class, it cannot be accessed from outside the

package.

Public: The access level of a public modifier is everywhere. It can be accessed from within the class,

outside the class, within the package and outside the package.

 4

 5

The syntax of Java Inheritance

The extends keyword indicates that you are making a new class that derives from an existing class.

The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or superclass, and the new

class is called child or subclass.

 7

 superclass (Parent class)

 9

 .

SUPER KEYWORD
The super keyword in Java is a reference variable which is used to refer immediate parent class

object. Usage of Java super Keyword

• super can be used to refer immediate parent class instance variable.

• super can be used to invoke immediate parent class method.

• super() can be used to invoke immediate parent class constructor.

We can use super keyword to access the data member (attribute) of parent class. It is used if parent
class and child class have same attribute.

 11

Animal and Dog both classes have a
common property color. If we print
color property, it will print the color

12

 15

 If we call eat() method from Dog class, it will call the eat() method

14

The super keyword can also

 .

Calling order of constructors in inheritance

Order of execution of constructors in inheritance relationship is from base (parent) class to derived

(child)class.

We know that when we create an object of a class then the constructors get called automatically.

In inheritance relationship, when we create an object of a child class, then first base class constructor

and then derived class constructor get called implicitly.

In simple word, we can say that the parent class constructor get called first, then of the child class

constructor.

 16

 17

METHOD OVERRIDING
If subclass (child class) has the same method as declared in the parent class, it is known as method

overriding in Java.

In other words, If a subclass provides the specific implementation of the method that has been

declared by one of its parent class, it is known as method overriding

Usage of Java Method Overriding

• Method overriding is used to provide the specific implementation of a method which is already

provided by its superclass. • Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

• The method must have the same name as in the parent class • The method must have the same

parameter as in the parent class.

• There must be an IS-A relationship (inheritance). Remember…….

• A static method cannot be overridden. It is because the static method is bound with class whereas

instance method is bound with an object. Static belongs to the class area, and an instance belongs to

the heap area.

• Can we override java main method? - No, because the main is a static method.

20

 3

 class

22

 5

24

 Points to Remember

1) A constructor cannot be declared as final.

2) Local final variable must be initializing during declaration.

3) We cannot change the value of a final variable.

4) A final method cannot be overridden.

5) A final class not be inherited.

6) If method parameters are declared final then the value of these parameters cannot be changed.

7) final, finally and finalize are three different terms. finally is used in exception handling and finalize
is a method that is called by JVM during garbage collection.

 7

 Yes, final method is inherited but you cannot override it. For

26

ABSTRACT CLASSES AND METHODS

• Data abstraction is the process of hiding certain details and showing only essential information to
the user.

• Abstract class: is a restricted class that cannot be used to create objects (to access it, it must be

inherited from another class).

• Abstract method: can only be used in an abstract class, and it does not have a body. The body is
provided by the subclass
(inherited from).

• An abstract class can have both abstract and regular methods:

 8

30

THE OBJECT CLASS

• The Object class is the parent class of all the classes in java by default. In other words, it is the
topmost class of java.

• The Object class provides some common behaviors to all the objects such as object can be

compared, object can be cloned, object can be notified etc.

• Object class is present in java.lang package

• Every class in Java is directly or indirectly derived from the Object class

 33

32

CHAPTER 1

PACKAGES INTERFACES &

EXCEPTION HANDLING

 1

34

PACKAGES

• A package in Java is used to group related classes and interfaces

• Think of it as a folder in a file directory.

• We use packages to avoid name conflicts, and to write a better maintainable code

• Packages in Java is a mechanism to encapsulate a group of classes, interfaces and sub packages

which is used to providing access protection

• Package in Java can be categorized in two form, built-in package user-defined package
 2

 3

Advantage of Java Package

 package

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) In real life situation there may arise scenarios where we need to define files of the same

name. This may lead to name-space collisions. Java package removes naming collision.

4) Reusability: Reusability of code is one of the most important requirements in the software

industry. Reusability saves time, effort and also ensures consistency. A class once developed can

be reused by any number of programs wishing to incorporate the class in that particular program.

5) Easy to locate the files.

4

Access Packages from another package
There are three ways to access the package from outside the package.

import package.*; import

package.classname; fully qualified

name

1. Using packagename.*

If we use packagename.* then all the classes and interfaces of this package will be accessible

but not subpackages.

The “import” keyword is used to make the classes and interface of another package accessible

to the current package.

3. Using fully qualified name

• If we use fully qualified name then only declared class of this package will be accessible.

• Now there is no need to import. But you need to use fully qualified name every time when

you are accessing the class or interface.

• It is generally used when two packages have same class name

e.g. java.util and java.sql packages contain Date class.

 If we import a package, subpackages will not be imported.

If we import a package, all the classes and interface of that package will be imported excluding

the classes and interfaces of the subpackages.

 Hence, you need to import the subpackage as well Note: Sequence of the program must be

package then import then class.

INTERFACE

• An interface in Java is a blueprint of a class. It has static constants and abstract methods.

• The interface in Java is a mechanism to achieve abstraction. There can be only abstract methods

in the Java interface, not method body. It is used to achieve abstraction and multiple inheritance

in Java.

• In other words, you can say that interfaces can have abstract methods and variables. It cannot

have a method body.

• Like abstract classes, interfaces cannot be used to create objects

• Interface methods do not have a body - the body is provided by the "implement" class

• On implementation of an interface, you must override all of its methods

• Interface methods are by default abstract and public

• Interface attributes are by default public, static and final

• An interface cannot contain a constructor (as it cannot be used to create objects)

Declare an interface
An interface is declared by using the interface keyword.

It provides total abstraction; means all the methods in an interface are declared with the

empty body, and all the fields are public, static and final by default.

A class that implements an interface must implement all the methods declared in the interface.

To access the interface methods, the interface must be "implemented“ by another class with

the implements keyword (instead of extends).

The body of the interface method is provided by the "implement" class

The relationship between classes and interfaces

As shown in the figure given above, a class extends another class, an interface extends another

interface, but a class implements an interface.
16

Why And When To Use Interfaces

1) To achieve security - hide certain details and only show the important details of an object

(interface).

2) Java does not support "multiple inheritance". However, it can be achieved with interfaces,
because the class can implement multiple interfaces.

Note: To implement multiple interfaces, separate them with a comma (see example below).

18

 19

EXCEPTION HANDLING

• Exception is an abnormal condition.

• In Java, an exception is an event that disrupts the normal flow of the program. It is an object

which is thrown at runtime.

• Exception Handling is a mechanism to handle runtime errors such as

 ClassNotFoundException, IOException, SQLException, RemoteException, etc.

• The core advantage of exception handling is to maintain the normal flow of the application.

• An exception normally disrupts the normal flow of the application that is why we use

exception handling.

20

Let's take a scenario:

• Suppose there are 10 statements in your program and there occurs an exception at

statement 5, the rest of the code will not be executed i.e. statement 6 to 10 will not be

executed.

• If we perform exception handling, the rest of the statement will be executed. That is why we

use exception handling in Java.

 21

Checked Exception

 exceptions: checked

 .

Unchecked Exception

22

• The classes which directly inherit Throwable class except RuntimeException and Error are

known as checked exceptions

• e.g. IOException, SQLException etc.

• Checked exceptions are checked at compile-time.

Unchecked Exception

• The classes which inherit RuntimeException are known as unchecked

exceptions

• e.g. ArithmeticException, NullPointerException,

• Unchecked exceptions are not checked at compile-time, but they are checked at runtime

 23

Common Scenarios of Java Exceptions

 A scenario where ArithmeticException occurs

 irrecoverable

24

• If we divide any number by zero, there occurs an ArithmeticException. int a=50/0;

//ArithmeticException

A scenario where NullPointerException occurs

• If we have a null value in any variable, performing any operation on the variable throws a

NullPointerException.

String s=null;

System.out.println(s.length()); //NullPointerException

 25

A scenario where NumberFormatException occurs

• The wrong formatting of any value may occur

NumberFormatException. Suppose I have a string variable that has characters, converting this

variable into digit will occur NumberFormatException. String s="abc"; int

i=Integer.parseInt(s);//NumberFormatException

 A scenario where ArrayIndexOutOfBoundsException occurs

• If you are inserting any value in the wrong index, it would result in

ArrayIndexOutOfBoundsException as shown below: int a[]=new int[5];

 a[10]=50; //ArrayIndexOutOfBoundsException
26

 27

 The try and catch keywords come in pairs

 try...catch

28

 29

30

The JVM firstly checks whether the exception is handled or not. If exception is not handled,

JVM provides a default exception handler that performs the following tasks:

• Prints out exception description.

• Prints the stack trace (Hierarchy of methods where the exception occurred).

• Causes the program to terminate.

But if exception is handled by the application programmer, normal flow of the application is

maintained i.e. rest of the code is executed.

 31

Multi-catch block
A try block can be followed by one or more catch blocks. Each catch block must contain a

different exception handler. So, if you have to perform different tasks at the occurrence of

different exceptions, use java multi-catch block.

At a time only one exception occurs and at a time only one catch block is executed.

All catch blocks must be ordered from most specific to most general, i.e. catch for

ArithmeticException must come before catch for Exception.

32

 33

nested try block in java.

34

 35

finally block

Java finally block is a block that is used to execute important code such as closing connection,

stream etc.

Java finally block is always executed whether exception is handled or not.

Java finally block follows try or catch block.

Note: If you don't handle exception, before terminating the program, JVM executes finally block(if

any).

36

 37

 .

38

 39

40

 41

throws keyword

The Java throws keyword is used to declare an exception.

 It gives an information to the programmer that there may occur an exception so it is better for

the programmer to provide the exception handling code so that normal flow can be maintained

Exception Handling is mainly used to handle the checked exceptions.

 If there occurs any unchecked exception such as NullPointerException, it is programmers fault

that he is not performing check up before the code being used.

42

 The Java throw keyword is used to

throw keyword

 43

 checked exception only, because:

44

MODULE 3

CHAPTER 2

JAVA INPUT OUTPUT (I/O) & FILES

 1

STREAM

• Java I/O (Input and Output) is used to process the input and produce the output.

• Java uses the concept of a stream to make I/O operation fast. The java.io package contains all the

classes required for input and output operations.

• We can perform file handling in Java by Java I/O API.

STREAM

• A stream is a sequence of data. In Java, a stream is composed of bytes. It's called a stream because it

is like a stream of water that continues to flow.

2

In Java, 3 streams are created for us automatically. All these streams are attached with the console.

1) System.out : standard output stream

2) System.in : standard input stream

3) System.err : standard error stream

The code to print output and an error message to the console.

System.out.println("simple message");

System.err.println("error message"); The code to get input

from console.

 int i=System.in.read(); //returns ASCII code of 1st character

 3

application

 5

 .

some sink.

 7

 InputStream class is an

 9

READING CONSOLE INPUT
In Java, there are three different ways for reading input from the user in the command line

environment(console).

1.Using Buffered Reader Class

• This is the Java classical method to take input, Introduced in JDK1.0.

• This method is used by wrapping the System.in (standard input stream) in an InputStreamReader

which is wrapped in a BufferedReader, we can read input from the user in the command line.

• Advantage - The input is buffered for efficient reading • Drawback - The wrapping code is hard to

remember.

10

1

2. Using Scanner Class

• This is probably the most preferred method to take input.

• The main purpose of the Scanner class is to parse primitive types and strings using regular

expressions, however it is also can be used to read input from the user in the command line.

Advantages:Convenient methods for parsing primitives (nextInt(), nextFloat(), …) from the tokenized

input.

• Regular expressions can be used to find tokens. Drawback:

• The reading methods are not synchronized

12

import java.io.InputStreamReader;

BufferedReader reader =

System.out.println(name);

 13

3. Using Console Class
It has been becoming a preferred way for reading user’s input from the command line.

In addition, it can be used for reading password-like input without echoing the characters entered

by the user; the format string syntax can also be used (like System.out.printf()).

Advantages:

Reading password without echoing the entered characters.

Reading methods are synchronized.

Format string syntax can be used.

Drawback: Does not work in non-interactive environment (such as in an IDE).

14

import java.util.Scanner;

// Using Scanner for Getting Input from User

System.out.println("You entered integer "+a);

HelloStudents

3.4

You entered string
HelloStudents

You entered float 3.4

WRITING CONSOLE OUTPUT

• Console output is most easily accomplished with print() and println() methods.

• These methods are defined by the class PrintStream which is the type of object referenced by

System.in.

• Because the PrintStream is an output stream derived from the OutputStream, it also

implements the low-level method write().

• Thus, write() can be used to write to the console. The simplest form of write() defined by the

PrintStream is shown below :

void write(int byteval)

16

 17

 Java PrintWriter class is the implementation of Writer class.

18

 19

20

SERIALIZATION

• Serialization in Java is the process of converting the Java code Object into a Byte Stream, to transfer

the Object Code from one Java Virtual machine to another and recreate it using the process of

Deserialization.

• Most impressive is that the entire process is JVM independent, meaning an object can be serialized

on one platform and deserialized on an entirely different platform.

• For serializing the object, we call the writeObject() method of ObjectOutputStream, and for

deserialization we call the readObject() method of ObjectInputStream class.

 21

serializing the object.

known as marshaling).

22

 23

24

 25

class. The writeObject() method

serialize the object. We are saving

26

 27

Create a File

To create a file in Java, you can use the createNewFile() method.

This method returns a boolean value: true if the file was successfully created, and false if the file

already exists.

Note that the method is enclosed in a try...catch block.

 This is necessary because it throws an IOException if an error occurs (if the file cannot be created

for some reason):

28

 The File class has many useful methods for creating and getting

information about files. For example:

 29

its

30

 31

32

 33

 Delete a File

34

 35

 1

STRING

• In Java, string is basically an object that represents sequence of char values. An array of
characters works same as Java string. For example:

char[] ch={‘h','a',‘i',‘j',‘a',‘v',‘a'};

String s=new String(ch); is same as:

String s = “haijava";

• Java String class provides a lot of methods to perform operations on strings such as compare(),
concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

 2

 Create a string object

There are two ways to create String object:

• By string literal

• By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

String s = "welcome";

• Each time you create a string literal, the JVM checks the "string
constant pool" first.

• If the string already exists in the pool, a reference to the pooled
instance is returned.

• If the string doesn't exist in the pool, a new string instance is created
and placed in the pool. For example:

 3

String s1="Welcome";

String s2="Welcome"; //It doesn't create a new instance

• In the above example, only one object will be created.

• Firstly, JVM will not find any string object with the value
"Welcome" in string constant pool, that is why it will create a new object.

• After that it will find the string with the value "Welcome" in the pool, it will not create a new
object but will return the reference to the same instance.

• Note: String objects are stored in a special memory area known as the "string constant pool".

 5

 Why Java uses the concept of String literal

 7

 By new keyword

 In such case, JVM will create a new string object in normal (non-

STRING CONSTRUCTORS
• The string class supports several types of constructors in Java APIs. The most commonly used

constructors of String class are as follows:

1. String() : To create an empty String, we will call a default constructor. For example:

String s = new String();

• It will create a string object in the heap area with no value

8

2. String(String str) : It will create a string object in the heap area and stores the given value in it.
For example:

String s2 = new String(“Hello Java“); Now, the object

contains Hello Java.

3. String(char chars[]) : It will create a string object and stores the array of characters in it. For
example: char chars[] = { ‘a’, ‘b’, ‘c’, ‘d’ };

String s3 = new String(chars);

The object reference variable s3 contains the address of the value stored in the heap area.

 9

4. String(char chars[], int startIndex, int count)

• It will create and initializes a string object with a subrange of a character array.

• The argument startIndex specifies the index at which the subrange begins and count specifies the
number of characters to be copied.

For example:

char chars[] = { ‘w’, ‘i’, ‘n’, ‘d’, ‘o’, ‘w’, ‘s’ }; String str = new

String(chars, 2, 3);

• The object str contains the address of the value ”ndo” stored in the heap area because the
starting index is 2 and the total number of characters to be copied is 3

 11

10

 13

12

 15

 String(byte byteArr[])

14

 17

below:

16

STRING COMPARISON

• We can compare string in java on the basis of content and reference

• There are three ways to compare string in java:

By equals() method

By = = operator

By compareTo() method

String compare by equals() method

• The String equals() method compares the original content of the string.

• It compares values of string for equality. String class provides two methods

 19

18

 21

 public

20

String compare by compareTo() method
• The String compareTo() method compares values lexicographically and returns an integer value that

describes if first string is less than, equal to or greater than second string.

Suppose s1 and s2 are two string variables. If:

s1 == s2 : 0 s1 > s2 : positive

value s1 < s2 : negative value

 The = = operator

22

 25

24

SEARCHING STRINGS

String contains()

• The java string contains() method searches the sequence of characters in this string.

• It returns true if sequence of char values are found in this string otherwise returns false.

Internal implementation public boolean

contains(CharSequence s) { return

indexOf(s.toString()) > -1;

}
26

 27

Signature

 The signature of string contains() method is given below:

 29

example below.

28

string. We can

CHARACTER EXTRACTION

String charAt()

• The java string charAt() method returns a char value at the given index number.

• The index number starts from 0 and goes to n-1, where n is length of the string.

• It returns StringIndexOutOfBoundsException if given index number is greater than or equal to this
string length or a negative number.

• Signature - The signature of string charAt() method is given below:

public char charAt(int index)

30

 31

 33

 StringIndexOutOfBoundsException with charAt()

32

 35

34

MODIFY STRINGS

• The java string replace() method returns a string replacing all the old char or CharSequence to
new char or CharSequence. Signature

• There are two type of replace methods in java string.

public String replace(char oldChar, char newChar) and

public String replace(CharSequence target, CharSequence replacement) • The

second replace method is added since JDK 1.5.

 37

36

 39

String replaceString=s1.replace('a','e');

System.out.println(replaceString);

38

• The java string replaceAll() method returns a string replacing all the sequence of characters
matching regex and replacement string.

Internal implementation public String replaceAll(String regex, String replacement) {

return Pattern.compile(regex).matcher(this).replaceAll(replacement);

}

Signature public String replaceAll(String regex, String replacement)

 41

 String replaceAll() example: replace character
• Let's see an example to replace all the occurrences of a single character.

public class ReplaceAllExample1{ public static void

main(String args[]){

40

String s1="java is a very good language";

String replaceString=s1.replaceAll("a","e");//replaces all occurrences of "a" to "e"

System.out.println(replaceString);

}}

 Output jeve is e very good lenguege
42

 43

STRING VALUE OF ()

• The java string valueOf() method converts different types of values into string.

• By the help of string valueOf() method, we can convert int to string, long to string, boolean to
string, character to string, float to string, double to string, object to string and char array to
string.

Internal implementation public static String valueOf(Object obj) {

return (obj == null) ? "null" : obj.toString();

}

 45

44

 47

 The signature or syntax of string valueOf() method is given below:

 long

46

3010

 49

 This is a boolean version of overloaded valueOf() method. It takes

48

 This is a char version of overloaded valueOf() method. It takes

 51

 valueOf(float f)

 This is a float version of overloaded valueOf() method. It takes

10.05

10.02

50

 String valueOf() Complete

 53

unmodifiable

52

why string is known as immutable.

• As you can see in the figure that two objects are created but s reference variable still refers to
"Sachin" not to "Sachin Tendulkar".

• But if we explicitely assign it to the reference variable, it will refer to "Sachin Tendulkar" object.
For example:

Output

Sachin Tendulkar

In such case, s points to the

"Sachin Tendulkar". Please notice that still

sachin object is not modified.

54

Why string objects are immutable in java • Because java uses the

concept of string literal.

• Suppose there are 5 reference variables,all referes to one object "sachin".

• If one reference variable changes the value of the object, it will be affected to all the reference
variables.

• That is why string objects are immutable in java.

 55

 57

 modifiable

56

as mutable string. StringBuffer and StringBuilder classes are used

 59

58

 61

beginIndex and endIndex.

60

COLLECTIONS IN JAVA
The Collection in Java is a framework that provides an architecture to store and manipulate the

group of objects.

Java Collections can achieve all the operations that you perform on a data such as searching,

sorting, insertion, manipulation, and deletion.

Java Collection means a single unit of objects. Java Collection framework provides many interfaces
(Set, List, Queue, Deque) and classes (ArrayList, Vector, LinkedList, PriorityQueue,
 HashSet, LinkedHashSet, TreeSet).

 63

Collection in Java - Represents a single unit of objects, i.e., a group.

framework in Java

• It provides readymade architecture.

string.

62

• It represents a set of classes and interfaces.

• It is optional.

Collection framework

The Collection framework represents a unified architecture for storing and manipulating a group of

objects. It has:

• Interfaces and its implementations, i.e., classes

• Algorithm
64

 65

The java.util package contains all the classes and interfaces for the Collection framework.

 Hierarchy of Collection Framework

Collection Interface

• The Collection interface is the interface which is implemented by all the classes in the collection
framework.

• It declares the methods that every collection will have. In other words, we can say that the
Collection interface builds the foundation on which the collection framework depends.

• Some of the methods of Collection interface are Boolean add (Object obj), Boolean addAll (
Collection c), void clear(), etc. which are implemented by all the subclasses of Collection interface.

66

LIST INTERFACE

• List interface is the child interface of Collection interface.

• It inhibits a list type data structure in which we can store the

ordered collection of objects.

• It can have duplicate values.

• List interface is implemented by the classes ArrayList,

LinkedList, Vector, and Stack.

• To instantiate the List interface, we must use :

 67

List <data-type> list1= new ArrayList();

List <data-type> list2 = new LinkedList();

List <data-type> list3 = new Vector();

List <data-type> list4 = new Stack();

There are various methods in List interface that can be used to insert, delete, and access the

elements from the list.

The classes that implement the List interface are given below. ArrayList

The ArrayList class implements the List interface. It uses a dynamic array to store the duplicate

element of different data types.

68

 69

Java ArrayList class uses a dynamic array for storing the elements.

It is like an array, but there is no size limit. We can add or remove elements anytime.

 So, it is much more flexible than the traditional array. It is found in the java.util package. It is like

the Vector in C++.

 The ArrayList class maintains the insertion order and is non-

synchronized. The elements stored in the ArrayList class can be

randomly accessed. Consider the following example.

The ArrayList in Java can have the duplicate elements also. It implements the List interface so we

can use all the methods of List interface here.

The ArrayList maintains the insertion order internally.

It inherits the AbstractList class and implements List interface.

70

The important points about Java ArrayList class are:

• Java ArrayList class can contain duplicate elements.

• Java ArrayList class maintains insertion order.

• Java ArrayList class is non synchronized.

• Java ArrayList allows random access because array works at the index basis.

• In ArrayList, manipulation is little bit slower than the LinkedList in Java because a lot of shifting
needs to occur if any element is removed from the array list.

 71

72

 73

 Iterating ArrayList using Iterator

THREAD

• JAVA is a multi-threaded programming language which means we can develop multi-

threaded program using Java.

• A multi-threaded program contains two or more parts that can run concurrently and each

part can handle a different task at the same time making optimal use of the available resources

specially when your computer has multiple CPUs.

• Each part of such program is called a thread. So, threads are lightweight processes within a

process.

2

• Multiprocessing and multithreading, both are used to achieve multitasking But we use

multithreading than multiprocessing because threads share a common memory area.

• They don't allocate separate memory area so saves memory, and context-switching

between the threads takes less time than process.

• Java Multithreading is mostly used in games, animation etc..

• A thread is a lightweight sub process, a smallest unit of processing.

• It is a separate path of execution.

• They are independent, if there occurs exception in one thread, it doesn't affect other

threads.

 3

 Advantages of Java Multithreading
It doesn't block the user because threads are independent and you can perform multiple

operations at same time.

You can perform many operations together so it saves time.

Threads are independent so it doesn't affect other threads if exception occur in a single thread.

Note: At a time one thread is executed only.

 5

LIFE CYCLE OF THREAD

• A thread can be in one of the five states.

• According to sun, there is only 4 states in thread life cycle in java new, runnable, non-

runnable and terminated.

• There is no running state. But for better understanding the threads, we can explain it in the

5 states.

 New

Runnable

Running

Non-Runnable (Blocked)

Terminated
6

 7

New - The thread is in new state if you create an instance of Thread class but before the

invocation of start() method.

Runnable - The thread is in runnable state after invocation of start() method, but the thread

scheduler has not selected it to be the running thread.

Running - The thread is in running state if the thread scheduler has selected it.

Non-Runnable (Blocked) - This is the state when the thread is still alive, but is currently not

eligible to run.

Terminated - A thread is in terminated or dead state when its run() method exits.

 8

A Running Thread transit to one of the non-runnable states, depending upon the circumstances.

• Sleeping: The Thread sleeps for the specified amount of time.

• Blocked for I/O: The Thread waits for a blocking operation to complete.

• Blocked for join completion: The Thread waits for completion of another Thread.

• Waiting for notification: The Thread waits for notification another Thread.

• Blocked for lock acquisition: The Thread waits to acquire the lock of an object.

JVM executes the Thread, based on their priority and scheduling.

 9

 11

 .

 Extending Thread class:

10

Thread Methods - Following is the list of important methods available in the Thread

class.

• public void run() : is used to perform action for a thread.

• public void start() : starts the execution of the thread. JVM calls the run() method on the thread.

• public void sleep(long miliseconds) : Causes the currently executing thread to sleep (temporarily

cease execution) for the specified number of milliseconds.

• public void join() : waits for a thread to die.

• public int getPriority() : returns the priority of the thread.

• public int setPriority(int priority) : changes the priority of the thread.
12

• public String getName(): returns the name of the thread.

• public Thread currentThread() : returns the reference of currently executing thread.

• public int getId() : returns the id of the thread.

• public Thread.State getState() : returns the state of the thread.

• public boolean isAlive() : tests if the thread is alive.

• public void suspend() : is used to suspend the thread(depricated). • public void resume() : is used

to resume the suspended thread

• public void stop() : is used to stop the thread(depricated).

• public boolean isDaemon() : tests if the thread is a daemon thread.

 13

Thread.start() & Thread.run()
In Java’s multi-threading concept, start() and run() are the two most important methods.

• When a program calls the start() method, a new thread is created and then the run() method is

executed.

• But if we directly call the run() method then no new thread will be created and run() method will

be executed as a normal method call on the current calling thread itself and no multi-threading

will take place.

14

 15

start ()
when we call the start() method of our thread class instance, a new thread is created with

default name Thread-0 and then run() method is called and everything inside it is executed on

the newly created thread.

run ()
when we called the run() method of our MyThread class, no new thread is created and the

run() method is executed on the current thread i.e. main thread. Hence, no multi-threading took

place. The run() method is called as a normal function call.

16

 17

Implementing Runnable interface:

• The Runnable interface should be implemented by any class whose instances are intended to be

executed by a thread.

• Runnable interface have only one method named run().

 public void run(): is used to perform action for a thread.

 Steps to create a new Thread using Runnable :

• Create a Runnable implementer and implement run() method.

• Instantiate Thread class and pass the implementer to the Thread, Thread has a constructor

which accepts Runnable instance.

• Invoke start() of Thread instance, start internally calls run() of the implementer. Invoking

start(), creates a new Thread which executes the code written in run().

 19

Difference

18

MAIN THREAD
Every java program has a main method. The main method is the entry point to execute the

program.

So, when the JVM starts the execution of a program, it creates a thread to run it and that thread

is known as the main thread.

Each program must contain at least one thread whether we are creating any thread or not.

The JVM provides a default thread in each program.

A program can’t run without a thread, so it requires at least one thread, and that thread is

known as the main thread.

 21

 Thread Example by

20

 23

22

“child” threads will be spawned.

How to control Main thread

• The main thread is created automatically when our program is started.

• To control it we must obtain a reference to it.

• This can be done by calling the method currentThread() which is present in Thread class.

• This method returns a reference to the thread on which it is called.

• The default priority of Main thread is 5 and for all remaining user threads priority will be

inherited from parent to child.

24

25

• The program first creates a Thread object called 't' and assigns the reference of current thread

(main thread) to it. So now main thread can be accessed via Thread object 't'.

• This is done with the help of currentThread() method of Thread class which return a reference to

the current running thread.

• The Thread object 't' is then printed as a result of which you see the output Current Thread :

Thread [main,5,main].

• The first value in the square brackets of this output indicates the name of the thread, the name

of the group to which the thread belongs.

• The program then prints the name of the thread with the help of getName() method.

• The name of the thread is changed with the help of setName() method.

• The thread and thread name is then again printed.

• Then the thread performs the operation of printing first 10 numbers.

• When you run the program you will see that the system wait for sometime after printing each

number.

• This is caused by the statement Thread.sleep (1000).

 27

 29

28

THREAD SYNCHRONIZATION

• When we start two or more threads within a program, there may be a situation when multiple

threads try to access the same resource and finally they can produce unforeseen result due to

concurrency issues.

• For example, if multiple threads try to write within a same file then they may corrupt the data

because one of the threads can override data or while one thread is opening the same file at the

same time another thread might be closing the same file.

30

• So there is a need to synchronize the action of multiple threads and make sure that only one

thread can access the resource at a given point in time.

Following is the general form of the synchronized statement :

Syntax synchronized(object identifier) {

// Access shared variables and other shared resources

}

Understanding the problem without Synchronization

• In this example, we are not using synchronization and creating multiple threads that are accessing

display method and produce the random output.

 31

In the above program, object fnew of class First is shared by

all the three running threads(ss, ss1 and ss2) to call the

shared method(void display). Hence the result is

nonsynchronized and such situation is called Race

condition

 32

Synchronized Keyword

• To synchronize above program, we must synchronize access to the shared display() method,

making it available to only one thread at a time. This is done by using keyword synchronized with

display() method.

• With a synchronized method, the lock is obtained for the duration of the entire method.

• So if you want to lock the whole object, use a synchronized method synchronized void display

(String msg)

Example : implementation of synchronized method

 33

 .

34
 Using Synchronized block

• If we want to synchronize access to an object of a class or only a part of a method to be

synchronized then we can use synchronized block for it.

• It is capable to make any part of the object and method synchronized.

• With synchronized blocks we can specify exactly when the lock is needed. If you want to keep

other parts of the object accessible to other threads, use synchronized block. Example

• In this example, we are using synchronized block that will make the display method available for

single thread at a time.

 35

 .

Which is more preferred - Synchronized method or Synchronized block?

• In Java, synchronized keyword causes a performance cost.

• A synchronized method in Java is very slow and can degrade performance.

• So we must use synchronization keyword in java when it is necessary else, we should use Java

synchronized block that is used for synchronizing critical section only.

 37

Thread suspend() method

• The suspend() method of thread class puts the thread from running to waiting state.

 .

36

• This method is used if you want to stop the thread execution and start it again when a certain

event occurs.

• This method allows a thread to temporarily cease execution.

• The suspended thread can be resumed using the resume() method.

Syntax public final void suspend()

38

 39

 41

40

 43

42

 45

MODULE 4

44

CHAPTER 3

EVENT HANDLING

 1

EVENT

• Change in the state of an object is known as event i.e. event describes the change in state of
source.

• Events are generated as result of user interaction with the graphical user interface components.

• For example, clicking on a button, moving the mouse, entering a character through keyboard,
selecting an item from list, scrolling the page are the activities that causes an event to happen.

Types of Event

The events can be broadly classified into two categories:

2

Foreground Events
• Those events which require the direct interaction of user. They are generated as consequences

of a person interacting with the graphical components in Graphical User Interface. For example,

clicking on a button, moving the mouse, entering a character through keyboard, selecting an item

from list, scrolling the page etc.

Background Events
• Those events that require the interaction of end user are known as background events.

Operating system interrupts, hardware or software failure, timer expires, an operation

completion are the example of background events.

 3

EVENT HANDLING

• Event Handling is the mechanism that controls the event and decides what should happen if an
event occurs.

• This mechanism have the code which is known as event handler that is executed when an event
occurs.

• Java Uses the Delegation Event Model to handle the events.

• This model defines the standard mechanism to generate and handle the events.

• Let's have a brief introduction to this model.

4

The Delegation Event Model has the following key participants namely:

Source - The source is an object on which event occurs. Source is responsible for providing

information of the occurred event to it's handler. Java provide as with classes for source object.

Listener - It is also known as event handler. Listener is responsible for generating response to an

event. From java implementation point of view the listener is also an object. Listener waits until it

receives an event. Once the event is received , the listener process the event and then returns.

 5

• The benefit of this approach is that the user interface logic is completely separated from the logic
that generates the event.

• The user interface element is able to delegate the processing of an event to the separate piece of
code.

• In this model ,Listener needs to be registered with the source object so that the listener can
receive the event notification.

• This is an efficient way of handling the event because the event notifications are sent only to
those listener that want to receive them.

6

 Events are supported by a number of Java packages, like java.util,

 9

Steps involved in event handling
The User clicks the button and the event is generated.

Now the object of concerned event class is created automatically and information about the

source and the event get populated with in same object.

Event object is forwarded to the method of registered listener class.

The method is now get executed and returns.

10

Points to remember about listener

• In order to design a listener class we have to develop some listener interfaces.

• These Listener interfaces forecast some public abstract callback methods which must be
implemented by the listener class.

• If we do not implement the predefined interfaces then your class can not act as a listener class for a
source object.

 11

12

14

13

SWING FUNDAMENTALS

• Java Swing is a GUI Framework that contains a set of classes to provide more powerful and

flexible GUI components than AWT.

• Swing provides the look and feel of modern Java GUI.

• Swing library is an official Java GUI tool kit released by Sun Microsystems.

• It is used to create graphical user interface with Java.

• Swing classes are defined in javax.swing package and its subpackages.

• Java Swing provides platform-independent and lightweight components.
 2

Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-based applications.

It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely written in java

JFC
• The Java Foundation Classes (JFC) are a set of GUI components which simplify the development of

desktop applications.

The javax.swing package provides classes for java swing API such as JButton, JTextField,
 JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

 3

Features of Swing
Platform Independent:

• It is platform independent, the swing components that are used to build the program are not

platform specific.

• It can be used at any platform and anywhere.

Lightweight:

• Swing components are lightweight which helps in creating the UI lighter.

• Swings component allows it to plug into the operating system user interface framework that

includes the mappings for screens or device and other user interactions like key press and mouse

movements.

 4

Plugging:

• It has a powerful component that can be extended to provide the support for the user

interface that helps in good look and feel to the application.

• It refers to the highly modular-based architecture that allows it to plug into other customized

implementations and framework for user interfaces.

Manageable: It is easy to manage and configure. Its mechanism and composition pattern allows

changing the settings at run time as well. The uniform changes can be provided to the user

interface without doing any changes to application code.

MVC:

• They mainly follows the concept of MVC that is Model View

Controller.

• With the help of this, we can do the changes in one component without impacting or touching

other components.

• It is known as loosely coupled architecture as well.

Customizable:

• Swing controls can be easily customized. It can be changed and the visual appearance of the

swing component application is independent of its internal representation.

Rich Controls :

• Swing provides a rich set of advanced controls like

 Tree, TabbedPane, slider, colorpicker, and table controls. 6

 7

 Difference between AWT and Swing

The Model-View-Controller Architecture

• Swing uses the model-view-controller architecture (MVC) as the fundamental design behind each

of its components

• Essentially, MVC breaks GUI components into three elements. Each of these elements plays a

crucial role in how the component behaves.

• The Model-View-Controller is a well known software architectural pattern ideal to implement

user interfaces on computers by dividing an application intro three interconnected parts

 9

• Main goal of Model-View-Controller, also known as MVC, is to separate internal representations

of an application from the ways information are presented to the user.

• Initially, MVC was designed for desktop GUI applications but it’s quickly become an extremely

popular pattern for designing web applications too.

• MVC pattern has the three components :

Model that manages data, logic and rules of the application View that is used to present data

to user

Controller that accepts input from the user and converts it to commands for the Model or View.

10

components like you can see in the following figure :

11

12

COMPONENTS & CONTAINERS

• A component is an independent visual control, such as a push button or slider.

• A container holds a group of components. Thus, a container is a special type of component that is

designed to hold other components.

• Swing components inherit from the javax.Swing.JComponent class, which is the root of the Swing

component hierarchy.

 13

COMPONENTS

• Swing components are derived from the JComponent class.

• JComponent provides the functionality that is common to all components. For example,

JComponent supports the pluggable look and feel.

• JComponent inherits the AWT classes Container and Component. Thus, a Swing component

is built on and compatible with an AWT component.

• All of Swing’s components are represented by classes defined within the package

javax.swing.

• The following table shows the class names for Swing components

14

• Notice that all component classes begin with the letter J.

• For example, the class for a label is JLabel; the class for a push button is JButton; and the

class for a scroll bar is JScrollBar

CONTAINERS

• Swing defines two types of containers. The first are top-level containers: JFrame, JApplet,

JWindow, and JDialog. These containers do not inherit JComponent. They inherit the AWT classes

Component and Container.

• The second type container are lightweight and the top-level containers are heavyweight. This

makes the top-level containers a special case in the Swing component library.

16

 JMenuItem

 JPopupMenu

15

17

Following is the list of commonly used containers while designed

18

EVENT HANDLING IN SWINGS

• The functionality of Event Handling is what is the further step if an action performed.

• Java foundation introduced “Delegation Event Model” i.e describes how to generate and control

the events.

• The key elements of the Delegation Event Model are as source and listeners.

• The listener should have registered on source for the purpose of alert notifications.

• All GUI applications are event-driven

20

 Java Swing event object

• When something happens in the application, an event object is created.

• For example, when we click on the button or select an item from a list.

19

• There are several types of events, including ActionEvent, TextEvent, FocusEvent, and

ComponentEvent.

• Each of them is created under specific conditions.

• An event object holds information about an event that has occurred.

 21

SWING LAYOUT MANAGERS

• Layout refers to the arrangement of components within the container.

• Layout is placing the components at a particular position within the container. The task of

laying out the controls is done automatically by the Layout Manager.

• The layout manager automatically positions all the components within the container.

• Even if you do not use the layout manager, the components are still positioned by the

default layout manager. It is possible to lay out the controls by hand, however, it becomes very

difficult

22

• Java provides various layout managers to position the controls.
Properties like size, shape, and arrangement varies from one layout
manager to the other.

• There are following classes that represents the layout managers:

java.awt.BorderLayout

java.awt.FlowLayout

java.awt.GridLayout

java.awt.CardLayout

java.awt.GridBagLayout

javax.swing.BoxLayout

javax.swing.GroupLayout

javax.swing.ScrollPaneLayout

javax.swing.SpringLayout etc.
 23

24

 FlowLayout BoxLayout

 25

26

28

Example of JButton

27

Java DataBase Connectivity (JDBC)
JDBC stands for Java Database Connectivity, which is a standard Java API for database-

independent connectivity between the Java programming language and a wide range of

databases.

The JDBC library includes APIs for each of the tasks mentioned below that are commonly

associated with database usage.

 It is used for placing text in a box

29

• Making a connection to a database

• Creating SQL or MySQL statements

• Executing SQL or MySQL queries in the database

• Viewing & Modifying the resulting records

2

JDBC Architecture
JDBC Architecture consists of two layers

• JDBC API: This provides the application-to-JDBC Manager connection.

• JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide transparent

connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data source.

 3

application

 4

The forName() method is used to register the driver class.

The getConnection() method of DriverManager class is used to establish connection with the

database

The createStatement() method of Connection interface is used to create statement. The object of

statement is responsible to execute queries with the database.

The executeQuery() method of Statement interface is used to execute queries to the database.

This method returns the object of ResultSet that can be used to get all the records of a table.

By closing connection object statement and ResultSet will be closed automatically. The close()

method of Connection interface is used to close the connection.

Java Database Connectivity with MySQL

• To connect Java application with the MySQL database, we need to follow 5 following steps.

• In this example we are using MySql as the database. So we need to know following informations

for the mysql database:

1. Driver class: The driver class for the mysql database is

com.mysql.jdbc.Driver.

2. Connection URL: The connection URL for the mysql database is

jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql is the database, localhost is the

 . Execute queries

 . Close connection

server name on which mysql is running, we may also use IP address, 3306 is the port number

and sonoo is the database name. We may use any database, in such case, we need to replace

the sonoo with our database name.

3. Username: The default username for the mysql database is root.

4. Password: It is the password given by the user at the time of installing the mysql database. In
this example, we are going to use root as the password.

Let's first create a table in the mysql database, but before creating table, we need to create

database first.

create database sonoo; use sonoo;

create table emp(id int(10),name varchar(40),age int(3));

8

•

• Once the connection was established, we have a Connection object
which can be used to create statements in order to execute SQL
queries.

• In the above code, we have to close the connection explicitly after
finish working with the database: conn.close();

INSERT Statement Example
Let’s write code to insert a new record into the table Users with following details:

10

password);

System.out.println("Connected");

11

username: bill password: secretpass
fullname: Bill Gates email:
bill.gates@microsoft.com

12

String sql = "INSERT INTO Users (username, password, fullname, email) VALUES (?, ?, ?, ?)";

PreparedStatement statement = conn.prepareStatement(sql); statement.setString(1,

"bill"); statement.setString(2, "secretpass"); statement.setString(3, "Bill Gates");

statement.setString(4, "bill.gates@microsoft.com"); int rowsInserted =

statement.executeUpdate(); if (rowsInserted > 0) {

System.out.println("A new user was inserted successfully!");

}

14

15

16

