JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

\.
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological g
University, Kerala) Since 1968

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(NBA Accredited)

COURSE MATERIAL

CST 205 OBJECT ORIENTED PROGRAMMING USING JAVA

VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers

and entrepreneurs for the development of the region and the Nation.

MISSION OF THE INSTITUTION

e To become an ultimate destination for acquiring latest and advanced knowledge in the
multidisciplinary domains.

e To provide high quality education in engineering and technology through innovative
teaching-learning practices, research and consultancy, embedded with professional
ethics.

e To promote intellectual curiosity and thirst for acquiring knowledge through outcome
based education.

e To have partnership with industry and reputed institutions to enhance the employability
skills of the students and pedagogical pursuits.

e To leverage technologies to solve the real life societal problems through community
services.

ABOUT THE DEPARTMENT

» Established in: 2008
» Courses offered: B.Tech in Computer Science and Engineering

» Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them
with the most conducive environment for quality academic and research oriented
undergraduate education along with moral values committed to build a vibrant nation.

DEPARTMENT MISSION
e Provide a learning environment to develop creativity and problem solving skills in a
professional manner.
e Expose to latest technologies and tools used in the field of computer science.

e Provide a platform to explore the industries to understand the work culture and
expectation of an organization.

e Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

e Develop research interest among students which will impart a better life for the society
and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

e Provide high-quality knowledge in computer science and engineering required for a
computer professional to identify and solve problems in various application domains.

e Persist with the ability in innovative ideas in computer support systems and transmit the
knowledge and skills for research and advanced learning.

e Manifest the motivational capabilities, and turn on a social and economic commitment
to community services.

PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: ldentify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modelling to complex engineering activities with
an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

COURSE OUTCOMES

COURSE OUTCOMES

Write Java programs using the object oriented concepts - classes, objects, constructors,
data hiding, inheritance and polymorphism.

Utilize datatypes, operators, control statements, built in packages & interfaces, Input/
Output Streams and Files in Java to develop programs.

Illustrate how robust programs can be written in Java using exception handling
mechanism.

Write application programs in Java using multithreading and database connectivity
Write Graphical User Interface based application programs by utilizing event

handling features and Swing in Java.

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

Use fundamental knowledge of mathematics to solve problems using suitable analysis
methods, data structure and algorithms.

Interpret the basic concepts and methods of computer systems and technical
specifications to provide accurate solutions.

Apply theoretical and practical proficiency with a wide area of programming
knowledge, design new ideas and innovations towards research.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1
CO’S | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12
3 3 3 2 3 2 2 - - - - 2
3 3 3 2 3 2 2 - - - - 2
3 3 3]2 |3 |2 2 - - - - 2
3 3 3 | 2|3 |2 2 - - - - 2
3 3 3 | 2 |3 |2 2 - - - - 2
C204 3 3 S 2 3 2 2 = = - - 2
CO PSO MAPPING
CO’S PSO1 PSO2 PSO3
3 3 3
3 3 3
3 3 3
3 3 3
2 3 3
C204 2.8 3 3

Reference Materials

ASoftware

» Software is a collection of instructions that enable the user to
interact with a computer, its hardware or perform tasks

* Without software, most computers would be useless. For
example, without your Internet browser software, you could not
surf the Internet. Without an operating system, the browser could
not run on your computer.

There are two types of software
1. System Software
2 . Application Software

Examples of system software are Operating System, Compilers,
Interpreter, Assemblers, etc.

Examples of Application software are Railways Reservation
Software, Microsoft Office Suite Software, Microsoft Word,
Microsoft PowerPoint , etc.

£ /3 // 73

Microsoft u Lll‘:l';l')é ! Microsoft q.__;
Wlndows Ll : Offlce
System Software's Application software's

FISoftware Design

BESoftware design is a process to transform user requirements into some suitable form, which
helps the programmer in software coding and implementation.

EThe design process for software systems often has two levels. At the first level the focus is on
deciding which modules are needed for the system on the basis of SRS (Software Requirement
Specification) and how the modules should be interconnected.

BEISoftware design is the first step in SDLC (Software Design Life Cycle)

Bt tries to specify how to fulfil the requirements mentioned in SRS document.

mln function-oriented design, the system is comprised of many
smaller sub-systems known as functions.

BIThese functions are capable of performing significant task in
the system

BIFunction oriented design inherits someproperties of
structured design where divide and conquer methodology is
used.

BIThis design mechanism divides the whole system into smaller
functions

BThese functional modules can share information among themselves by means of

information passing and using information available globally.
Eg: Banking process
Here withdraw, Deposit, Transfer are functions

and that can be divided in to subfunctions again.

FOD

So, in FOD, the entire problem is divided in to
number of functions and those functions are

Ry s broken down in to smaller functions and these
G smaller functions are converted in to software
{Defn... }

e modules.
{Defn.. }
Transfer()

{ Defn..}

EIOOD is based on Objects and interaction between the objects Rinteraction between
objects is called message communication.
Bt involves the designing of Objects, Classes and the relationship between the classes

Consider the previous example of Banking

o0n process.

Here, customer, money and account are
objects

g Customer, Money, Account

In OOD, implementation of a software based on the concepts

of objects.
This approach is very close to the real-world applications

Basic Object Oriented concepts

Object

Abstraction Oriented Y Polymorphism
Programming

Concepts

Inheritance Encapsulation

RIOBJECT

BlObjects are real-world entities that has their own properties and behavior.

Bllt has physical existence

Eg: person, banks, company, customers etc

RICLASS

RBIA class is a blueprint or prototype from which objects are created

BIA class is a generalized description of an object.

ElAn object is an instance of a class

BIRelationship between Object & Class

BlLet’s take Human Being as a class. My name is John, and | am an instance/object of the class
Human Being

FlObject has a physical existence while a class is just a logical definition.

FIEncapsulation

BEThe wrapping up of data(variables) and function (methods) into a single unit (called class) is
known as encapsulation.

Bt is also called "information hiding.

} Class

Methods

Variables J

Key Points of Encapsulation

¢Protection of data from accidental
«Flexibility and extensibility of the code and reduction in

-Encapsulation of a class can hide the internal details of how an
oes

«Encapsulation protects

BABSTRACTION

10

BAbstraction means displaying only essential information and hiding the details.

BIData abstraction refers to providing only essential information about the data to the
outside world, hiding the background details or implementation.

BIConsider a real-life example of a man driving a car. The man only knows that pressing the
accelerators will increase the speed of the car or applying brakes will stop the car but he
does not know about how on pressing accelerator the speed is actually increasing, he does
not know about the inner mechanism of the car or the implementation of accelerator,
brakes etc in the car. This is what abstraction is.

Abstraction & Encapsulation

Encapsulation

Abstraction

EIPOLYMORPHISM

BIThe word polymorphism means having many forms

Blln simple words, we can define polymorphism as the ability of a message to be displayed in
more than one form.

Eg: A person at the same time can have different characteristic. Like a man at the same time is a
father, a husband, an employee. So the same person posses different behavior in different
situations. This is called polymorphism.

BlAn operation may exhibit different behaviors in different instances. The behavior depends
upon the types of data used in the operation.

Polymorphism i

(=

e =N,

5:? n

Fig: polvmorphism

Blinheritance

BThe capability of a class to derive properties and characteristics from another class is called
Inheritance.

OR

Inheritance is the process by which objects of one class acquired the properties of objects of
another classes

BISub Class : The class that inherits properties from another class
is called Sub class or Derived Class.

EISuper Class : The class whose properties are inherited by sub class is called Base Class or Super
class.

EIReusability: Inheritance supports the concept of “reusability”, i.e. when we want to create a
new class and there is already a class that includes some of the code that we want, we can
derive our new class from the existing class. By doing this, we are reusing the fields and
methods of the existing class.

ANIMAL CLASS Eg: Dog, Cat, Cow can be Derived Class of
/ l \ Animal Base Class.
DOG CAT cow
CLASS CLASS CLASS

mumL (Unified Modeling Language) is a general-purpose, graphical
modeling language in the field of Software Engineering

BIUML is used to specify, visualize, construct, and document the
artifacts (major elements) of the software system

RIUML is a visual language for developing software blue prints
(designs). A blue print or design represents the model.

BIFor example, while constructing buildings, a designer or architect
develops the building blueprints. Similarly, we can also develop
blue prints for a software system.

EIUML is the most commonly and frequently used language for building software system blueprints

BEUML is not a programming language, it is rather a visual language.
The UML has the following features:

® |t is a generalized modeling language.

® |t is distinct from other programming languages like C++, Python, etc.

® |t is interrelated to object-oriented analysis and design.

® |t is used to visualize the workflow of the system.

® |t is a pictorial language, used to generate powerful modeling artifacts

UML is linked with

object oriented design

Diagrams in UML can be broadly classified as:

Structure Diagrams :

Behavior Diagrams:
system

and analysis

Capture static aspects or structure of a system

Capture dynamic aspects or behavior of the

£\

Structure
Diagram

Behaviour
Diagram

[[[[
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Comp Deploy F Interaction State Machine
Diagram Structure Diagram Diagram Diagram Diagram Diagram
q c icati Ir tion Timing
Diagram on Diagram Overview Diagram Diagram

RICLASS DIAGRAM
BIThe most widely use UML diagram is the class diagram. It is the building block of all object
oriented software systems.

BlUsing class diagrams we can create the static structure of a system by showing system’s classes,
their methods and attributes.

EIClass diagrams also help us identify relationship between different classes or objects.

EIThere are several software available which can be used online and offline to draw these diagrams
Like Edraw max, lucid chart etc.

Class & Obiect

Bobby
Properties Methods Property Values Methods
Color Sit Color: Yellow Sit
Eye Color Lay Down Eye Color: Brown Lay Down
Height Shake Height: 17 in Shake
Length Come Length: 35 in Come

Weight Weight: 24 pounds

Class Notation MyClass

A class notation consists of three parts: +attributet : int
BIClass Name: -attribute2 : float.

#attributed : Circle

* The name of the class appears in the first partition. +opi(inp1 : bool, in p2) : String

BIClass Attributes: -op2(input p3 : int): float

» Attributes are shown in the second partition. #op3{out p6): Class6*

* The attribute type is shown after the colon.

* Attributes map onto member variables (data members) in code.

BIClass Operations (Methods):

* Operations are shown in the third partition. They are services the class provides.

* The return type of a method is shown after the colon at the end of the method
signature.

* The return type of method parameters are shown after the colon following the
parameter name. Operations map onto class methods in code

The +, - and # symbols before an attribute and operation name in

aclass denote the visibility of the attribute and operation
+ denotes public attributes or operations
- denotes private attributes or operations

denotes protected attributes or operations

Public Attribute

[} MyClassName

") +aftrbute : int

Private Afiribute = =»|.attribute2 : float

#attribute3 : Circle-

/7 +op1(in p1 : boolean, in p2}: Sting
. -op2(inout p3: int}: float
Protected Affributes #OF;,;-{M pg?:'aa)s-sﬁ.

10

Relationships between classes

Association
= DI Inheritance
B e e & Realization

df--—--------------2F Dependency

> | Aggregation

Tl | Composition

1. Dependency

® A dependency means the relation between two or more classes in which a change in one may force
changes in the other.

® Dependency indicates that one class depends on another.

® A dashed line with an open arrow Ciasst Class2

2. Inheritance (or Generalization)
® A generalization helps to connect a subclass to its superclass.

® A sub-class is inherited from its superclass.

® A solid line with a hollow arrowhead that point from the child to the parent class

SuperClass

Fig: Inheritance (or Generalization)

Subclasst Subclass2

3. Association

e This kind of relationship represents static relationship s between
classes Aand B.

e There is an association between Class1 and Class2

¢ Asolid line connecting two classes

Class1 Class2

Fig: Association

4. Aggregation

e Aspecial type of association. It represents a "part of" relationship

e Class2 is part of Class1. Classi 1 Class2
<>
e Many instances (denoted by the *) of Class2 can be associated
with Class1.

¢ Asolid line with an unfilled diamond at the association end

connected to the class of composite

5. Composition

® A special type of aggregation where parts are destroyed when the whole is destroyed.
® Objects of Class2 live and die with Class1.

® Class2 cannot stand by itself.

® Asolid line with a filled diamond at the association connected to the class of composite

Class1 | Class2
B —

Multiplicity

® It means, how many objects of each class take part in the relationships

® Exactly one -1

® Zeroorone-0..1

® Many-0..*or *

® One or more - 1..*

® Exact Number-e.g.3..40r6

® Or a complex relationship - e.g. 0..1, 3..4, 6.* would mean any number of objects other than 2
or5

30

Eg: Class diagram for an ATM system

Bank

+code
+address 0
iy S0 AT™M
Customer atoced
+name
:dob = +udentifies()
+card number *transactions()
+pin
Account
s +number Account Transaction
12 +balance
+deposit))
swithdrawi()
createTransacton()
Current Account Ty ——
+account no. Savings-Checking | *account no.
T *batance
+ithdraw()

ATM Transactions

+uansaction id
+date

+amount
+post balance

AUSE CASE MODEL / USE CASE DIAGRAM

EThe purpose of a use case diagram in UML is to demonstrate the different ways that a user

might interact with a system.

Bt captures the dynamic behavior of a live system.

Bla use case diagram can summarize the details of your system's users (also known as actors)

and their interactions with the system.

BITo build a use case diagram, we will use a set of specialized symbols and connectors

BIA use case diagram doesn't go into a lot of detail, but it depicts a high-level overview of the

relationship between use cases, actors, and systems.

RIA use-case model is a model of how different types of users interact with the system to
solve a problem Use case diagram components

® Actors: The users that interact with a system. An actor can be a person, an organization, or an

outside system that interacts with your application or system. They must be external objects that
produce or consume data.

® System: A specific sequence of actions and interactions between actors and the system. A system
may also be referred to as a scenario

® Goals: The end result of most use cases. A successful diagram should describe the activities and
variants used to reach the goal.

Use case diagram symbols and notation
1. Use cases

® Horizontally shaped ovals that represent the different uses that a user might have

® A use case represents a distinct functionality of a system, a component, a package, or a class

UseCase-name

UML UseCase Notation

2 . Actors

e Stick figures that represent the people actually employing the use

cases.
e Auseris the best example of an actor

e One actor can be associated with multiple use cases in the system

)

Actor-name

UML Actor Notation

3. Associations
® A line between actors and use cases

® In complex diagrams, it is important to know which actors are associated with which use cases.

4. System boundary boxes
® A box that sets a system scope to use cases

® All use cases outside the box would be considered outside the scope of that system.

System

5. Packages
® A UML shape that allows you to put different elements into groups

® Just as with component diagrams, these groupings are represented as file folders.

purposes of use case diagram
BlUsed to gather the requirements of a system.
ElUsed to get an outside view of a system.
Elldentify the external and internal factors influencing the system. EShow the interaction among

the requirements and actors

Eg: Use case diagram of a student management system

check attendance

i _ .
check timetable
Student \

Teacher

update attendance

Bank ATM

— Check Balances =

A

i] Withdraw Cash - %
usiomer > —

| Transfer Funds — 8k Eg. ATM use case diagram

@
Maintenance
Technician

<< extend>> Use Case

The <<extend>> use case inserting additional action sequences into the
base use-case sequence.

Return Book < <<Extend=> " pook Damaged

<<include>> Use Case

The time to use the <<include>> relationship is afteryou have completed
the first cut description of all your main Use Cases.

System Boundary
I
A

System

Associafion = = —»
Extend
—— Order Food TR
Actor = = = == >
Waiter
—] Cook Food —

'
|

<=Extend>>

—

Patron

<<Extend=> ~
~— PayforFood)eC----------- Pay for Wine
PE— A

Cashier

Chef

FINTERACTION DIAGRAM
BIINTERACTION DIAGRAMS are used in UML to establish communication between objects

Blinteraction diagrams mostly focus on message passing and how these messages make up one
functionality of a system

BIThe critical component in an interaction diagram is lifeline and messages.
Interaction diagrams capture the dynamic behavior of any system

EThe details of interaction can be shown using several notations such as sequence diagram,
timing diagram, collaboration diagram.

42

Notation of an Interaction Diagram

interaction SequenceDiagram)

Lifeline1

Purpose of an Interaction Diagram
® To capture the dynamic behavior of a system.
® To describe the message flow in the system.
® To describe the structural organization of the objects.
® To describe the interaction among objects.

® Interaction diagram visualizes the communication and sequence of message passing in the
system.

® Interaction diagram represents the ordered sequence of interactions within a system.

® Interaction diagrams can be used to explain the architecture of an object-oriented system.

1. Sequence diagram

Different types of Interaction Diagrams

® Purpose - To visualize the sequence of a message flow in the system

® Shows the interaction between two lifelines

2. Collaboration diagram

® Also called as a communication diagram

® Shows how various lifelines in the system connects.

3. Timing diagram

¢ Focus on the instance at which a message is sent from one object to another object.

How to draw a Sequence Diagram

interaction SequenceDiagraml)
Lifelinel Lifeline2 Lifeline3

1:Message

i

2: Self Message

3 : Reply Message

4 : Asynchronous message

® Inasequence diagram, a lifeline is represented by a vertical bar.

® Alifeline represents an individual participant in a sequence diagram

® Alifeline will usually have a rectangle containing its object name

® A message flow between two or more objects is represented using a vertical dotted line
which extends across the bottom of the page.

® In asequence diagram, different types of messages and operators are used

® Inasequence diagram, iteration and branching are also used.

Message Name

Synchronous message

Asynchronous message

Return message

Object creation
Object destruction

Found message

Lost message

Messages used

Meaning

The sender of a message keeps waiting for the
receiver to return control from the message
execution.

The sender does not wait for a return from the
receiver; instead, it continues the execution of
a next message.

The receiver of an earlier message returns the
focus of control to the sender.

The sender creates an instance of a classifier.
The sender destroys the created instance.

The sender of the message is outside the scope
of interaction.

The message never reaches the destination,
and itis lost in the interaction.

interaction McDonald's Order System)

Sequence diagram of Mcdonald’s ordering system

Drawbacks of a sequence diagram

® Sequence diagrams can become complex when too many lifelines are involved in the

system.

® If the order of message sequence is changed, then incorrect results are produced.

® Each sequence needs to be represented using different message notation, which can be

a little complex.

® The type of message decides the type of sequence inside the diagram

51

How to draw a Collaboration /Communication Diagram

interaction CommunicationDiagram1)

Self
[Loop
Lifelinel Lifeline2

2 : Reverse Message
-+

+Connector

1: Forward Message
—

BlAs per Object-Oriented Programming (OOPs), an object entity has various attributes
associated with it.

BlUsually, there are multiple objects present inside an objectoriented system where each
object can be associated with any other object inside the system

BlCollaboration Diagrams are used to explore the architecture of objects inside the system.

AThe message flow between the objects can be represented using a collaboration diagram.

53

Collaboration Diagram Example

interaction Student Management System /

Login System

+Request Login

1 : Fill the login details

Authentication System

+Request Access
2 : Check details
e

=%

: Return access

Student Database

EThe above collaboration diagram represents a student information management system.
The flow of communication in the above diagram is given by,

® A student requests a login through the login system.
® An authentication mechanism of software checks the request.

® |f a student entry exists in the database, then the access is allowed; otherwise, an error is
returned.

Benefits of Collaboration Diagram

® |t is also called as a communication diagram.

® |t emphasizes the structural aspects of an interaction diagram how lifeline connects.

® |ts syntax is similar to that of sequence diagram except that lifeline don't have tails.

® Messages passed over sequencing is indicated by numbering each message hierarchically.

® It allows you to focus on the elements rather than focusing on the message flow as described
in the sequence diagram.

® Sequence diagrams can be easily converted into a collaboration diagram as collaboration
diagrams are not very expressive.

Drawbacks of a Collaboration Diagram

® Collaboration diagrams can become complex when too many objects are present within the
system.

® It is hard to explore each object inside the system.
® Collaboration diagrams are time consuming.
® The object is destroyed after the termination of a program.

® The state of an object changes momentarily, which makes it difficult to keep track of every
single change the occurs within an object of a system.

How to draw a Timing Diagram

Requirement

Analysis Design Development

Blln the above diagram, first, the software passes through the requirements phase then the
design and later the development phase.

EThe output of the previous phase at that given instance of time is given to the second
phase as an input

BThus, the timing diagram can be used to describe SDLC (Software Development Life Cycle)
in UML.

Benefits of a Timing Diagram
® Timing diagrams are used to represent the state of an object at a particular instance of time.

® Timing diagram allows reverse as well as forward engineering.

® Timing diagram can be used to keep track of every change inside the system.
Drawbacks of a Timing Diagram

® Timing diagrams are difficult to understand.

® Timing diagrams are difficult to maintain.

60

BACTIVITY DIAGRAM

BRACTIVITY DIAGRAM is basically a flowchart to represent the flow from one activity to another
activity.

EIThe activity can be described as an operation of the system
The basic purpose of activity diagrams is to capture the dynamic behavior of the system

Rt is also called object-oriented flowchart

BlActivity diagrams are not only used for visualizing the dynamic nature of a system, but they
are also used to construct the executable system by using forward and reverse engineering
techniques.

61

Basic components of an activity diagram

® Action: A step in the activity wherein the users or software perform a given task.

® Decision node: A conditional branch in the flow that is represented by a diamond. It includes
a single input and two or more outputs.

® Control flows: Another name for the connectors that show the flow between steps in the
diagram.

® Start node: Symbolizes the beginning of the activity. The start node is represented by a black
circle.

® End node: Represents the final step in the activity. The end node is represented by an
outlined black circle.

Activity diagram symbols

® Start symbol - Represents the beginning of a process or workflow in an activity diagram.

® Activity symbol - Indicates the activities that make up a modeled process. These symbols, which
include short descriptions within the shape, are the main building blocks of an activity diagram.

® Connector symbol - Shows the directional flow, or control flow, of the activity.

L - Connector
Start symbol Activity symbol — symbol

® Joint symbol / Synchronization bar - Combines two concurrent activities and re-introduces them
to a flow where only one activity occurs at a time. Represented with a thick vertical or horizontal

line.

® Fork symbol - Splits a single activity flow into two concurrent activities. Symbolized with multiple
arrowed lines from a join.

® Decision symbol - Represents a decision and always has at least two paths branching out with
condition text.

Joint symbol/ Decision
Synchronization Fork symbol symbol

bar

64

® Note symbol - Allows the diagram creators or collaborators to communicate additional messages
that don't fit within the diagram itself. Leave notes for added clarity and specification.

® Send signal symbol - Indicates that a signal is being sent to a receiving activity

® Receive signal symbol - Demonstrates the acceptance of an event. After the event is received, the
flow that comes from this action is completed.

Koteisyitibol D Send signal Receive signal
symbol symbol

® Flow final symbol - Represents the end of a specific process flow. This symbol shouldn’t represent
the end of all flows in an activity. The flow final symbol should be placed at the end of a single
activity flow.

® Condition text - Placed next to a decision marker to let you know under what condition an activity
flow should split off in that direction

® End symbol - Marks the end state of an activity and represents the completion of all flows of a
process.

Flowfinal - [Condiion] Condition tex End symbol

symbol

66

Activity diagram - a login page

Check account

A

Withdrawal Deposit ACtIVIty Dia gram -

Banking system.

Withdraw not Update account
ailoved v Withdraw amount balance

BSTATE CHART DIAGRAM

® State chart diagram is used to capture the dynamic aspect of a system

® An object goes through various states during its lifespan. The lifespan of an object
remains until the program is terminated. The object goes from multiple states depending
upon the event that occurs within the object.

® Each state represents some unique information about the object.

® State chart diagram visualizes the flow of execution from one state to another state of
an object.

® It represents the state of an object from the creation of an object until the object is

destroyed or terminated.
69

® The primary purpose of a state chart diagram is to model interactive systems and define each
and every state of an object.

® State chart diagrams are also referred to as State machines and state diagrams.

® A state machine consists of states, linked by transitions. A state is a condition of an object in
which it performs some activity or waits for an event

at
Initial Pseudo State Stl e Final State
! invoice v invoice !
Y created paying destoyed V.
o (T e
I

. . . . Transition
Simple State Machine Diagram Notation
70

Notation and Symbol for State Machine / State Chart Diagram

. initial
state

Statel state-box
<> decision-box

@ final-state

UML state diagram notations

® |nitial state - The initial state symbol is used to indicate the beginning of a state machine
diagram.

® Final state - This symbol is used to indicate the end of a state machine diagram.

® Decision box - It contains a condition. Depending upon the result of an evaluated guard
condition, a new path is taken for program execution.

® Transition - A transition is a change in one state into another state which is occurred
because of some event. A transition causes a change in the state of an object.

e State box

[IStates represent situations during the life of an object.

Bt is denoted using a rectangle with round corners.

BThe name of a state is written inside the rounded rectangle.

A state can be either active or inactive.

BWhen a state is in the working mode, it is active, as soon as it stops executing and transits into
another state, the previous state

State Cancelled

I
v
Passive Active
cancel order
[] A [request confirm
] Created shipment Shipping Delivered arrival Closed
Transition

becomes inactive, and the current state becomes active.

P —
Types of State
‘ State A simple state
BISimple state
\\—/
® They do not have any sub state. AT
RICom posite state {;“;uviues/me(hods A state with internal activities

N—

® These types of states can have one or more than
one sub state.

® A composite state with two or more sub states is called an orthogonal state.

ESubmachine state

® These states are semantically equal to the composite states ¢ Unlike the composite state, we
can reuse the submachine states.

Enrollnaat University
state
i en for 1
'-—{ ramy J | eﬁ’fou"memj— Diagram
A

A\ \ \J

C‘ﬁclasses
{ Scheduled] r Full ‘] (Closed to 1_ | end

E— —— Beingtaught ——| Finalexams
enrollment
1 J G . The

dropped

composite

state
“Enrollment” is made up of various sub states that will lead

students through the enrollment process.

* Once the student has enrolled, they will proceed to “Being taught”
and finally to “Final exams.”

[lled >
cancelled B

close

. Begin

!

Entering the OTP

l Eg: state chart diagram
False
e user authentication process.
validation
True
User Authentication

Terminate

State machine vs. Flowchart

Statemachine FlowChart

It represents various states of a system. The Flowchart illustrates the program
execution flow.

The state machine has a WAIT concept, i.e., The Flowchart does not deal with waiting for a

wait for an action or an event. concept.

State machines are used for a live running Flowchart visualizes branching sequences of a

system. system.

The state machine is a modeling diagram. A flowchart is a sequence flow or a DFD
diagram.

The state machine can explore various states of Flowchart deal with paths and control flow.
a system.

CHAPTER 2
INTRODUCTION TO JAVA

® Java is a powerful general-purpose , Object Oriented programming language developed by Sun
Micro System of USA in 1991.

® Development team members are James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan

® First name of Java is “Oak,” but was renamed “Java” in 1995.
® Java derives much of its character from C and C++.
® Java Changed the Internet by simplifying web programming

® Java innovated a new type of networked program called the applet >

High
Performance

Features _ FEATURES OF JAVA
of (Java Buzzwords)

(o] Java

Interpreted Platform

Independent

JAVA RUNTIME ENVIRONMENT (JRE)

® A software program needs an environment to run .

® The runtime environment loads class files and ensures there is access to memory and other
system resources to run them.

® Java Runtime Environment provides the minimum requirements for executing a Java application
programs.

® JRE is an installation package which provides environment to only run(not develop) the java
program(or application)onto your machine.

® JRE is only used by them who only wants to run the Java Programs
i.e. end users of your system. JRE can be view as a subset of JDK.

JAVA DEVELOPMENT KIT (JDK)

® The Java Development Kit (JDK) is a software development environment used for developing
and executing Java applications and applets

® |t includes the Java Runtime Environment (JRE), an interpreter/loader (Java), a compiler
(javac), an archiver (jar), a documentation generator (Javadoc) and other tools needed in Java
development.

® JDK is only used by Java Developers.

] .
: Librariesand : Compiler,
: compiled class: Debugger and
. 5 Other
IVM flles Development
rt.jar Tools

JRE
Java Development Kit(JDK)

JAVA VIRTUAL MACHINE (JVM)

® JVM is a program which provides the runtime environment to execute Java programs. Java
programs cannot run if a supporting JVM is not available.

® JVM is a virtual machine that resides in the real machine (your computer) and the machine
language for JVM is byte code.

® The Java compiler generate byte code for JVM rather than different machine code for each
type of machine.

® JVM executes the byte code generated by compiler and produce output.

® JVM is the one that makes java platform independent.

® The primary function of JVM is to execute the byte code produced by compiler

® The JVM doesn’t understand Java source code, that’s why we need to have javac compiler

® Java compiler (javac) compiles *.java files to obtain *.class files that contain the byte codes
understood by the JVM.

® JVM makes java portable (write once, run anywhere).

® Each operating system has different JVM, however the output they produce after execution of
byte code is same across all operating systems.

[VM<—> Interpreter

for Mac
Interpreter
Byte codeﬁ VM <>
Source Code —> —- (.Ztlass e | for Windows

(javafile) v

Interpreter
VM <>
l for Linux

BYTE CODE

® Java byte code is the instruction set for the Java Virtual Machine
® |t is the machine code in the form of a .class file.
® Byte code is a machine independent code

® |t is not completely a compiled code but it is an intermediate code somewhere in the middle
which is later interpreted and executed by JVM.

® Byte code is a machine code for JVM.

® Byte code implementation makes Java a platform- Independent language.

Source code et
{Program) J '
bytecode class file

Machine code Machine code Machine code

11

EJAVA COMPILER

® Java is compiled language. But it is very different from traditional compiling in the way that
after compilation source code is converted to byte code.
® Javac is the most popular Java compiler

® Java has a virtual machine called JVM which then converts byte code to target code of machine
on which it is run.

® JVM performs like an interpreter. It doesn’t do it alone, though. It has its own compiler to
convert the byte code to machine code. This compiler is called Just In Time or JIT compiler.

PUAVA APPLET

® An applet is a special kind of Java program that is designed to be transmitted over the Internet

and automatically executed by a Java-compatible web browser
® It runs inside the web browser and works at client side

® Applets are used to make the web site more dynamic and entertaining

® Applets are not stand-alone programs. Instead, they run within either a web browser or an

applet viewer. JDK provides a standard applet viewer tool called applet viewer.

® In general, execution of an applet does not begin at main() method.

Lifecycle of Java Applet

14

Java Applet vs Java Application

Java Application Java Applet

Java Applications are the stand-alone programs |Java Applets are small Java programs which are
which can be executed independently designed to exist within HTML web document

Java Applications must have main() method for

Java Applets do not need main() for execution
them to execute

Java Applets cannot run independently and
require API's

Java Applications do not need to extend any Java Applets must extend java.applet.Applet
class unless required class

Java Applications can execute codes from the
local system

Java Applications just needs the |RE

Java Applets Applications cannot do so

Java Applications has access to all the resources |Java Applets has access only to the browser-
available in your system specific services

BISimple

® |t’s simple and easy to learn if you already know the basic concepts of Object Oriented Programming.
® C++ programmer can move to JAVA with very little effort to learn.

® Java syntax is based on C++

® Java has removed many complicated and rarely-used features, for example, explicit pointers, operator
overloading, etc.

16

JObject oriented

® Java is true object oriented language. Everything in Java is an object.
® All program code and data reside within objects and classes.

® Java comes with an extensive set of classes, arranged in packages that can be used in our
programs through inheritance.

[1Distributed

® Java is designed for distributed environment of the Internet. Its used for creating applications on
networks

® Java enables multiple programmers at multiple remote locations to collaborate and work
together on a single project.

Compiled and Interpreted

® Usually a computer language is either compiled or Interpreted. Java combines both this
approach and makes it a two-stage system.

® Compiled : Java enables creation of a cross platform programs by compiling into an
intermediate representation called Java Byte code.

® Interpreted : Byte code is then interpreted, which generates machine code that can be directly
executed by the machine that provides a Java Virtual machine.

18

Robust

® |t provides many features that make the program execute reliably in variety of environments.
® Java is a strictly typed language. It checks code both at compile time and runtime.
® Java takes care of all memory management problems with garbage-collection.

® Java, with the help of exception handling captures all types of serious errors and eliminates any
risk of crashing the system.

19

Secure

® Java provides a “firewall” between a networked application and your computer.

® When a Java Compatible Web browser is used, downloading can be done safely without fear of
viral infection or malicious intent.

® Java achieves this protection by confining a Java program to the java execution environment and
not allowing it to access other parts of the computer.

Architecture Neutral

® Java language and Java Virtual Machine helped in achieving the goal of “write once; run
anywhere, any time, forever.”

® Changes and upgrades in operating systems, processors and system resources will not force any
changes in Java Programs.

20

Portable

® Java is portable because it facilitates you to carry the Java byte code to any platform. It doesn't
require any implementation.

® Java Provides a way to download programs dynamically to all the various types of platforms

connected to the Internet.

High Performance

® Java performance is high because of the use of byte code.

® The byte code can be easily translated into native machine code.

Multithreaded

® Multithreaded Programs handled multiple tasks simultaneously, which was helpful in creating
interactive, networked programs.

® Java run-time system comes with tools that support multiprocess synchronization used to
construct smoothly interactive systems

[IDynamic

® Java is capable of linking in new class libraries, methods, and objects.

® |t supports functions from native languages (the functions written in other languages such as C
and C++).

® |t supports dynamic loading of classes. It means classes are loaded on demand

22

—> Suggested
— [ptional

Documentation Section

Package Statement

Import Statement

—> [ptional

Interface Statement

—> [ptional

Class Definition

—> [ptional

Main Method Class

/Main method defintion

}

— Essential Section

23

BPIDocumentation Section

® You can write a comment in this section. It helps to understand the code. These are optional

® |t is used to improve the readability of the program.

® The compiler ignores these comments during the time of execution

® There are three types of comments that Java supports

BSingle line Comment //This is single line comment BMulti-line Comment [
this is multiline comment. and support multiple lines*/

BIDocumentation Comment /** this is documentation cmnt*/

24

BIPackage Statement

® We can create a package with any name. A package is a group of classes that are defined by a
name.

® That is, if you want to declare many classes within one element, then you can declare it
within a package

® It is an optional part of the program, i.e., if you do not want to declare any package, then
there will be no problem with it, and you will not get any errors.

® Package is declared as: package package name;

Eg: package mypackage;

Bllmport Statement

® |f you want to use a class of another package, then you can do this by importing it directly
into your program.

® Many predefined classes are stored in packages in Java

® We can import a specific class or classes in an import statement.

Examples: import java.util.Date; //imports the date class

import java.applet.*; /*imports all the classes from the java
applet package*/

Rlinterface Statement

® This section is used to specify an interface in Java
® Interfaces are like a class that includes a group of method declarations

® It's an optional section and can be used when programmers want to implement multiple
inheritances within a program.

EIClass Definition

® A Java program may contain several class definitions.
® Classes are the main and essential elements of any Java program.

® A class is a collection of variables and methods

EMain Method Class

® The main method is from where the execution actually starts and follows the order specified for
the following statements

® Every Java stand-alone program requires the main method as the starting point of the program.
® This is an essential part of a Java program.
® There may be many classes in a Java program, and only one class defines the main method

® Methods contain data type declaration and executable statements.

A simple java program to print hello world

public class Hello

{
//main method declaration public static void main(String[] args)
{

System.out.printIn("hello world");

Elpublic class Hello - This creates a class called Hello. We should make sure that the class name
starts with a capital letter, and the public word means it is accessible from any other classes.

EIBraces - The curly brackets are used to group all the commands together
Blpublic static void main

® When the main method is declared public, it means that it can be used outside of this class as
well.

® The word static means that we want to access a method without making its objects

® The word void indicates that it does not return any value. The main is declared as void because it
does not return any value.

® main is a method; this is a starting point of a Java program.

String[] args
It is an array where each element is a string, which is named as args. If you run the Java code
through a console, you can pass the input parameter. The main() takes it as an input.

System.out.printin();

® This statement is used to print text on the screen as output
® system is a predefined class, and out is an object of the PrintWriter class defined in the system
® The method println prints the text on the screen with a new line.

® We can also use print() method instead of printin() method. All Java statement ends with a
semicolon.

® When JVM starts up, it creates a heap area which is known as runtime data area. This is where all
the objects (instances of class) are stored

® Since this area is limited, it is required to manage this area efficiently by removing the objects
that are no longer in use.

® The process of removing unused objects from heap memory is known as Garbage collection and
this is a part of memory management in Java.

® Languages like C/C++ don’t support automatic garbage collection, however in java, the garbage
collection is automatic.

32

Heap

- . no reference

= e left

Heap

okject dumped
object

33

* In java, garbage means unreferenced objects.

* Main objective of Garbage Collector is to free heap memory by
destroying unreachable objects.

* Unreachable objects : An object is said to be unreachable iff it doesn’t
contain any reference to it.

* Eligibility for garbage collection : An object is said to be eligible for
GC(garbage collection) iff it is unreachable.

* finalize() method — This method is invoked each time before the object
is garbage collected and it perform cleanup processing.

* The Garbage collector of JVM collects only those objects that are
created by new keyword. So if we have created any object without
new, we can use finalize method to perform cleanup processing

Request for Garbage Collection

® We can request to JVM for garbage collection however, it is upto the JVM when to start the
garbage collector.

® Java gc() method is used to call garbage collector explicitly.

®* However gc() method does not guarantee that JVM will perform the garbage collection.

® It only request the JVM for garbage collection. This method is present in System and Runtime
class.

BITOKENS

® Java Tokens are the smallest individual building block or smallest unit of a Java program

® Java program is a collection of different types of tokens, comments, and white spaces.

36

Keywords int, while,float

Identifiers sum, total

Constants 10, 20

Strings «ram”, “hello” J

Special symbols

Operators

37

FIKeywords

® A keyword is a reserved word. You cannot use it as a variable name, constant name etc.

® The meaning of the keywords has already been described to the java compiler. These meaning

cannot be changed.

Constants or Literals
e Constants are fixed values of a particular type of data,which cannot

be modified in a program.

e Java language specifies five major type of literals.

integer J

Floating point

Literals |
in Java Character

J
J
Sl] J
J

Boolean

Prepared By EBIN PM, AP, IESCE 39

® Thus, the keywords cannot be used as variable names because that would try to change the
existing meaning of the keyword, which is not allowed.

C Java language has reserved 50 words as keywords

_lldentifiers

* Identifiers are the names of variables, methods, classes, packages and

interfaces

* Identifier must follow some rules.
BAll identifiers must start with either a letter(atozorAtoZ) or
currency character(S) or an underscore.

BIThey must not begin with a digit
BlAfter the first character, an identifier can have any combination of
characters.

RIA Java keywords cannot be used as an identifier.
Bldentifiers in Java are case sensitive, foo and Foo are two different
identifiers.

BIThey can be any length Eg: inta; char name;

38

40

mString

® In java, string is basically an object that represents sequence of char values.

® An array of characters works same as java string.
Eg: char[] ch ={"a','t,,'n",'y",'l','a'};

String s = "atnyla";

® Java String class provides a lot of methods to perform operations on string

such

as

compare(), concat(), equals(), split(), length(), replace(), compareTo(),

intern(), substring() etc.

43

Eg: Integer literal : 100
Floating-point literal : 98.6
Character literal : ‘s
String literal : “sample”

Comments

Comment type Meaning

// comment Single-line comments

/* comment */ Multi-line comments

/** documentation */ | Documentation comments

42

shift OperatorBrackets[] : Opening and closing brackets are used as array
element reference. These indicate single and multidimensional
subscripts. Parentheses() : These special symbols are used to indicate
function calls and function parameters.

Braces{} : These opening and ending curly braces mark the start and
end of a block of code containing more than one executable statement.
semicolon ; : It is used to separate more than one statements like in for
loop is separates initialization, condition, and increment.

comma, : It is an operator that essentially invokes something called an
initialization list. asterisk * : It is used for multiplication. assignment
operator = : It is used to assign values.

Period . : Used to separate package names from subpackages and
classes

Special symbol

5 < > =

() S

% [] # ?
& { }

s , . /

= \ 53 +

FlOperators

® An operator is a symbol that takes one or more arguments and operates on them to produce a
result.

® Unary Operator

® Arithmetic Operator

® Relational Operator

® Bitwise Operator

BIWhitespace

Java is a free-form language. This means that you do not need to follow any special indentation
rules

White space in Java is used to separate tokens in the source file. It is also used to improve

readability of the source code. Eg inti=0;

White spaces are required in some places. For example between the int keyword and the
variable name.

In java whitespace is a space, tab, or newline

47

® Logical Operator

® Ternary Operator

® Assignment Operator

46

Primitive Data types

g

Boolean Numeric

| Character lnte?ml
| el Y
| integer Floating-point
v ¥ ‘ \ y ¥ Y
‘ boolean char byte short long int float double
Data type defines the values that a variable can take, for

example if a variable has int data type, it can only take integer

values.

Data types specify the different sizes and values that can be

stored in the variable.
There are two types of data types in Java:
Primitive data types

Non-primitive data types

=

byte , short , int and long data types are used for storing whole

numbers.

=)

float and double are used for fractional numbers.

=)

char isused for storing characters(letters).

=)

boolean data type is used for variables that holds either true or

@888

byte short int long
1 2 4 8

false.

Primitive Data Types (Fundamental Data Types)

¢ Primitive Data Types are predefined and available within the Java

language. There are 8 types of primitive data types:
Data Type Default Value Default size
byte 0 1 byte
short 0 2 bytes
int 0 4 bytes
long oL 8 bytes
float 0.0f 4 bytes
double 0.0d 8 bytes
boolean false 1 bit

char "\u0000’ 2 bytes

class Javabxample {

public static void main(String[] args) {

boolean b = false;

System.out.println(b);

[

class JavaExample {

public static void main(String[] args) {

char ch = 'Z';

System.out.println(ch);

[

Output false

Output VA

class JavaExample {

public static void main(String[] args) {

byte num;

aum = 113;

System.out.println(hum);

class JavaExample {

public static void main(5tring[] args) {

short num;

num = 158;

System.out.println(num};

Output 113

Output 150

1. Variable Declaration
Syntax: data_type variable_name ;

Eg: inta,b,c; type

name ‘
float pi; T ‘
double d; int count;
2 . Variable Initialization
Syntax : data_type variable_name =value;
Eg: inta=2,b=4,c=6; int num = 45.66;
float pi = 3.14f;
double val =20.22d;

chara="v;

Variables In JAVA

e Variable in Java is a data container that stores the data value
during Java program execution.

¢ Variable is a memory location name of the data.

e variable="vary + able" that means its value can be changed.

¢ In order to use a variablein a program we need to perform 2 steps
1. Variable Declaration
2. Variable Initialization

Types of variables

1. Local variables - declared inside the method.
2. Instance Variable - declared inside the class but outside the
method
3. Staticvariable - declared as with static keyword.
class A{

int data=50;//instance variable

static int m=100;//static variable
Example: void method(){

int n=90;/flocal variable

¥

}//end of class

11

Variable Name

In programming

Value of the
variable

int age = 21 ;

K / Random Access
| RAM Memory

Java Type Casting or Type Conversion
BIType casting is when you assign a value of one primitive data type to another type.

BlIn Java, there are two types of casting:

1. Widening Casting (automatically) — converting a smaller type to a larger type size
(called Type Conversion) byte -> short -> char -> int -> long -> float -> double

Z. Narrowing Casting (manually) — converting a larger type to a smaller size type (called

Type Casting) double -> float -> long -> int -> char -> short -> byte

Truncation

Biwhen a floating-point value is assigned to an integer type: truncation takes place, As you know,
integers do not have fractional components

EThus, when a floating-point value is assigned to an integer type, the fractional component is lost.

BIFor example, if the value 45.12 is assigned to an integer, the resulting value will simply be 45. The
0.12 will have been truncated.

BINo automatic conversions from the numeric types to char or boolean. Also, char and boolean are
not compatible with each other.

class Casting{

public static void main(String[] args){
. int number;
H -Float float fval= 22.33F;
number= (int)fval;
. " System.out.println(number);
int number;)
float fval= 32.33f; ¥
number= [(1nt)fval] atnat.
Type in which you Variable name
want to convert Which you want to convert 32
Press any key to continue . . .

15

BIAn operator is a symbol that tells the computer to perform certain mathematical or logical
manipulation.

Bllava operators can be divided into following categories:
® Arithmetic Operators

® Relational Operators

® Bitwise Operators

® |ogical Operators

® Assignment Operators

® conditional operator (Ternary)

16

Arithmetic Operators
Operator Description Example
+ (Addition) Adds two operands 5 + 10
=15
- (Subtraction) | Subtract second operands from first. Also used to Concatenate | 10-5=5
two strings
X Multiplies values on either side of the operator. 10 * 5
(Multiplication) =50
/ (Division) Divides left-hand operand by right-hand operand. 10/5=2
% (Modulus) Divides left-hand operand by right-hand operand and returns | 5% 2 =1
remainder.
++ (Increment) | Increases the value of operand by 1. 2++ gives
3
-- (Decrement) | Decreases the value of operand by 1. 3--
gives 2

17

class ArithmeticOperations {

public static void main (String[] args){

int answer = 2 + 2;

System

answer

System.

answer

System.

answer

System.

answer

System.

answer

System.

.out.println(answer);

= answer - 1;
out.println(answer);

= answer * 2;
out.println(answer);

= answer / 2;
out.println(answer);

= answer + 8;

out.println(answer);

= answer % 7;
out.println(answer);

Output

11

18

class IncrementDecrementExample {

class IncrementDecrementExamplef
public static void main(String args[])}{

B g i public static void main(String args[]){
System.out.println(x++); %"t p=10;
System.out.println(++x); int ¢=18;
System.out.println(x--); System.out.println(p++ + +p);//16+12=22
System.out.println(--x); System.out.println(q++ + q++);//18+11=21
}
; }
}
Output |
5 Output
7
7 22
5 21
Press any key to continue . . . Press any key to continue . . .
X++ is Use —Then - Change ++ xis Change—-Then - Use
19
Use of Modulus Operator Joining or Concatenate two strings
class ModulusOperator { class AssignmentConcatination {
public static void main(String args[]) { public static void main(String[] args){
int R = 42;
double S = 62.25; String firstName = "Rahim";
String lastName = "Ramboo”;
System.out.println("R mod 18 = " + R % 18);
System.out.println("S mod 18 = " + S % 18); String fullName = firstName + lastName;
¥ System.out.println(fullName);
} }
}
Qutput
Output
R mod 10 = 2 tp
S mod 10 = 225 RahimRamboo

Press any key to continue . . . Press any key to continue . . .

20

Relational Operators
Operators | Deseriptions xamples
== (equal | This operator checks the value of two operands, if both are | (2 == 3) is
to) equal, then it returns true otherwise false. not true.
!= (not equal | This operator checks the value of two operands, if both are not | (4 != 5) is
to) equal, then it returns true otherwise false. true.
> (greater | This operator checks the value of two operands, if the left side of | (5 > 56) is
than) the operator is greater, then it returns true otherwise false. not true.
< (less than) | This operator checks the value of two operands if the left side of | (2 < 5) is
the operator is less, then it returns true otherwise false. true.
>= (greater | This operator checks the value of two operands if the left side of | (12 >= 45)
than or | the operator is greater or equal, then it returns true otherwise | isnot true.
equal to) false.
<= (less than | This operator checks the value of two operands if the left side of | (43 <= 43)
orequalto) | the operator is less or equal, then it returns true otherwise | is true.
false.
21
public class RelationalOperator {
public static void main(String args[]) {
{0t Dot Output
i = 15
AL g =129, p == q = false
: " 3 = q = true
System.out.println("p == g = " + (p == q)); R
: W " | i p > g = false
System.out.println("p =g =" + (p != q));
System.out.println("p > g = " + (p > q)); p<q=tue
System.out.println("p ¢ g =" + (p < q)); g >=p = true
System.out.println("q >=p = " + (q >= p)); q <= p = false
System.out.println(’q <= p = " + (q <= p)); Press any key to continue

22

and)

& (bitwise

Bitwise AND operator give true result if both
operands are true. otherwise, it gives a false
result.

| (bitwise or)

Bitwise OR operator give true result if any of the
operands is true.

A (bitwise
XOR)

Bitwise Exclusive-OR Operator returns a
true result if both the operands are different.
otherwise, it returns a false result.

~ (bitwise
compliment)

Bitwise Operators

Bitwise One's Complement Operator is
unary Operator and it gives the result as an

opposite bit.

(left
shift)

Binary Left Shift Operator. The left operands
value is moved left by the number of bits
specified by the right operand.

>
shift)

(right

Binary Right Shift Operator. The left operands
value is moved right by the number of bits
specified by the right operand.

{zero
right

=
fill
shift)

Shift right zero fill operator. The left operands
value is moved right by the number of bits
specified by the right operand and shifted values
are filled up with zeros.

23

class BitwiseAndOperator {
public static void main(String[] args){

int A = 19;
int B = 3;
int Y3

¥ =A & B;

System.out.println(Y);

class BitwiseOrOperator {
public static void main(String[] args){

int A = 16;
int B = 3;

int vY;

Y =A| B;
System.out.println(Y);

Output

2
Press any key to continue . . .

Output

1
Press any key to continue . . .

24

Logical Operators

Operator | Deseription | Example
&& If both the operands are non-zero, then the condition becomes true. | (0 && 1)
(logical is false
and)

(| If any of the two operands are non-zero, then the condition becomes | (0 || 1) is
(logical | true. true

or)

! (logical | Logical NOT Operator Use to reverses the logical state of its operand. | (0 && 1)
not) If a condition is true then Logical NOT operator will make false. is true

25

public class LogicalOpesratorDemo {
public static void main(String args[]) {
boolean bl = true;

boolean b2 = false;

System.out.println{”bl &% b2: " + (b1&&b2));
ystem.out.println(™bl || b2: ™ + (b1]||b2));
System.out.printin(™! (bl && b2): " + !1(b1&8&b2));

w

Output:

bl && b2: false
bl || b2: true
1{bl &% b2): true

26

Assignment Operators

Operator Example Same As
= x=5 x=5
+= X+=3 X=x+3
sz x==3 x=x—3
= x=3 X=x*3
/= x/=3 %=X 3
%= *%:%0=:3 X'=%%3
&= x&=3 x=x&3
= x|=3 =3
27
conditional Operator / Ternary Operator (?:)
Expressionl ? Expression2 : Expression3
Expression ? value if true : value if false
public class ConditionalOperator {
public static void main(String args[]) {

int a, b;

a = 28;

b= (a== Ly ¥ 48: 25:

System.out.println("Value of b is "+ b);

b = (a == 28) ? 20: 30;

System.out.println("Value of b is "+ b);

1
}
Output

Value of b is : 25
Value of b is : 20

Press any key to continue . . .

28

public class TernaryOpsratorDemo {

public static void main(String args[]) {
“int numl, num2;) output:
numl = 253
/* numi ié not equal to 1@ that's why
* the second value after colon is assigned
* to the variable num2 o
b num2: 100

num2 = (numl == 1@) ? 18@: 200;

System.out.println("num2: "+num2);

/* numl is equal to 25 that's why
* the first value is assigned

* to the variable num2

=/

num2 = (numl == 25) ? 1@@: 200;
System.out.println("num2: "+num2);

29

e Evaluate 2 *x-3*y ?
(2 x)-(3y) or 2(x-3y) whichoneis correct??????
e Evaluate A/B*C
A/(B*C() or (A/B)*C Which one is correct?????

To answer these questions satisfactorily one has to understand

the priority or precedence of operations.

30

Priority [Operators | Description

15t */ % multiplication, division, modular division
»nd + - addition, subtraction

srd = assignment

e Precedence order -

When two operators share an operand

operator with the higher precedence goes first.

e Associativity -

When an expression has two operators with the

same precedence, the expression is evaluated according to

its associativity.

the

31

Larger number means higher precedence

Precedence

Operator Type Associativity

15

0
1]

Parentheses
Array subscript Left to Right
Member selection

14

Unary post-increment .
nase Right to left
Unary post-decrement -

(fvpe) |Unary type cast

Unary pre-increment
Unary pre-decrement
Unary plus

Unary minus Right to left
Unary logical negation
Unary bitwise complement

12

Multiplication
Division Left to right
Modulus

11

Addition

i Left to right
Subtraction eft torig

32

Larger number means higher precedence

== Bitwise left shift
10 == Bitwise right shift with sign extenston| Left to right
=== |Bitwise right shift with zero extension
< Relational less than
== Relational less than or equal
9 = Relational greater than Left to right
= Relational greater than or equal
instanceof| Tvpe comparison (objects only)
== Relational is equal to .
8 I= Relational is not equal to LR ioaete
7 & Bitwise AND Left to right
6 (& Bitwise exclusive OR Left to right
5 Bitwise inclusive OR Left to right
4 && |Logical AND Left to right
3 II Logical OR Left to right
2 2 Ternary conditional Right to left
= Assignment
+= Addition assignment
1 -= Subtraction assignment Right to left

Multiplication assignment
Division assignment

%= [Modulus assignment
Evaluate i=2*3/4+4/4+8 -2+5/8
i=6/4+4 [4+8-2+5/8 operation: *
i=1+4 /4 +8-2+5/8 operation: /
i=1+1+8 -2+5/ 8 operation: /
i=1 +1+8-2+0 operation: /
i=2 +8-2+0 operation: +
i=10-2+0 operation: +
i=8 +0 operation : -
i=8 operation: +

34

SELECTION STATEMENTS

BSelection statements allow your program to choose different paths of execution based upon
the outcome of an expression or the state of a variable.

RlAlso called decision making statements
RlJava supports various selection statements, like if, if-else and switch
BIThere are various types of if statement in java.

Blif statement
Blif-else statement
Blnested if statement
Rif-else-if ladder

85

If statement

Use the if statement to specify a block of Java code to be

executed if a condition is true.
Syntax
if (condition)

{

// block of code to be executed if the condition is true

36

Example
class Samplelf
{
public static void main(String args[])
{
int a=19;
if (a > @) {
System.out.println("a is greater than @");
}
¥
¥
Output:
a is greater than 0

37

if-else Statement

If-else statement also tests the condition. It executes the if block
if condition is true otherwise else block is executed.

Syntax

if (condition)
{

// block of code to be executed if the condition is true

// block of code to be executed if the condition is false

38

class SamplelNestedIfElse

{

public static void main(String args[])

{
int a=18,b=20,c=30;

if (a>b)
{
if (a>c)
{
System.out.println(“a is greatest.");
iy
else
{
System.out.println{"c is greatest.");
i
¥
else
{
if (b>c)
{
System.out.println("b is greatest.");
3

else

{
System.out.println("c is greatest.");
b
3
¥
¥
Output:

c is greatest.

41

if (condition) {

¥

if (condition)

{

// block of code to be executed if the condition is true

¥

else

{

// block of code to be executed if the condition is false

else

{

if (condition) {

// block of code to be executed if the condition is true

}

else

{

// block of code to be executed if the condition is false

Nested if else Statement
Syntax

40

class IfElseIfladder {
public static wvoid main(String[] args){
double score = 55;

if (score >= 20.8)

Systam.out.println('a');
else if (score »>= 82.2)
System.out.println('B');
else if (score >= 7@.8)
System.out.printin('C");
else if (score »>= 68.8)
Systam.out.println('D");

else
System.out.println('F');
¥
¥
Dutput
F

Press any key to continue . . .

class SampleladderIfElse
{
public static void main(String args[])
{
int a=18;
if (a > @) {
System.out.println("a is +ve");
}
else if (a < @) {
System.out.println("a is -ve");
3
else {

System.out.println("a is zero");

}

Output:

ais +ve

B if else if ladder

Syntax
if (condition) {

// block of code to be executed if the condition is true

} else if
(condition) {

// block of code to be executed if the condition is true

}

else {

// block of code to be executed if the condition is true

}

42

switch case

EThe if statement in java, makes selections based on a single true or false condition. But switch
case have multiple choice for selection of the statements

Blit is like if-else-if ladder statement EIHow to Java switch

works:

® Matching each expression with case

® Once it match, execute all case from where it matched.

® Use break to exit from switch

® Use default when expression does not match with any case s

If...Else & Ternary Operator — A comparison

int time = 28;
if (time < 18)
System.out.println(“Good day) 5
} else {
System.out.println("“Good evening.")
int time = 20,

System.out.println(result),

String result = (time < 18) ? "Good day."

44

S ntax switch (expression) {

case valuel:

// statement sequenc
break;

case value2:

// statement sequenc

break;

s

[{4]

case valuel:

// statement seqguence
break;

default:

// default statement seguence

iy

46

Why break is necessary in switch statement ?
® The break statement is used inside the switch to terminate a statement sequence.

® When a break statement is encountered, execution branches to the first line of code that follows the
entire switch statement

class SampleSwitch case 6:
{ System.out.println(“The day is Saturday");
public static void main(String args[]) break;
{ case 7:
int day = 4; System.out.println("The day is Sunday");
switch (day) { break;
case 1: deafault:
System.out.println("The day is Monday"); System.out.println(“Please enter between 1 to 7.");
break; }
case 2:
System.out.println("The day is Tuesday");
break;
case 3:
System.out.println("The day is Wednesday"); Output
break;
case 4 The day is Thursday
System.out.println("The day is Thursday”);
break;
case 5:
System.out.println("The day is Friday");
break;
47
® This has the effect of jumping out of the switch.
O The break statement is optional. If you omit the break, execution will continue on into the next

case. 48

Nested Switch

class MestedSwitchCase

{

public static void main(String args{]) {

int count = 1;
int target = 1;
switch(count) {
case 1:

switch(target) { // nested switch

break;

case 2:

case @:
System.out.println("target is zero inner switch");
break;

case 1: // no conflicts with outer switch
System.out.println("target is one innar switch");
break;

¥

System.out.println("case 2 outer switch");

}

target is one inner switch

Press any key to continue . . .

49

® Aloop can be used to tell a program to execute statements repeatedly

® A loop repeatedly executes the same set of instructions until a termination condition is met.

Iteration Statements
Or
LOOP

while do-while | for

50

While Loop

Blin while loop first checks the condition if the condition is true then control goes inside the loop

body otherwise goes outside of the body.

Syntax while (condition)
{

// code block to be executed

51

Example - 1 Output

class WnhilelocopExample Welcome 1o atnylal
{ Welcome to atnylal
public static void main(String args[]) Welcome 1o atnylal
tCw. .
int count = @;
while(count < 1@0)¢{ | | T
System.out.println("iHelcome to atnylal!");| | T
o h—_— Welcome 1o atnylal
} Welcome to atnyial
} Welcome fo atnylal
3 Press any key to continue . .
52
Example -2 Output

public class WhilelcopExample {
public static void main(String[] args) {
int n=1;
while(n<=18){
System.out.println(n);
n++;

¥

W o ~N O W N -

10

Press any key to continue . .

53

Example -3 Output

oy

class WhileloopSingleStatement {
public static void main(String[] args){
int count = 1;
while (count <= 11)
System.out.printIn("Numbar Count :

+ count+t);

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

Count :
Count :
Count :
Count :
Count :
Count :
Count :
Count :
Count :
Count :
Count :
Press any key to continue . .

=W =

- O W N O ;m

0
1

54

Example -4 Output

public class WhileInfiniteloop {
public static void main(String[] args) {
while(true){
System.out.println("infinitiv

Nyt

while

loop");

infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive

while
while
while
while
while
while
while
while
while
while
while
while
while
while
while
while
while

infinite time it

loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop

will print like this

55

Example -5

(Boolean Condition inside while loop

Output

class WhilelocopBoolean {
public static void main(String[] args){
boolean a = true;
int count = @ ;
while (a)
1

count++;
if(count==5)
a = false;

o
b
g

System.out.printlin("Number Count :

" + count);

Number
Number
Number
Number
Number

Count :
Count :
Count :
Count :
Count :

= W N = O

Press any key to

do...while loop

A do while loop is a control flow statement that executes a block of code at least once, and then
repeatedly executes the block, or not, depending on a given condition at the end of the block (in

while).
Syntax do {
// code block to be executed

} while (condition);

Example -1 Output

class Dolhile { Number 0
public static void main(String args[]) { Number 1
i = 0;
;nt{n 2 Number 2
o
Number 3
System.out.println("Humber " + n);
. Number 4
n++; =
} while(n < 18); Number 5
¥ Number 6
b Number 7
Number 8§
Number 9
Press any key to continue . .
58
Example -2 (Infinitive do-while Loop) Output

infinitive do while loop
infinitive do while loop

public class InfiniteDowhileloop { infinitive do while loop
public static void main{String[] args) { infinitive do while loop
do{ infinitive do while loop
System.out.println("infinitive do while locop"); infinitive do while loop

) jwhile(true); infinitive do while loop

7 infinitive do while loop

} infinitive do while loop

infinite time it will print like this

59

Difference Between while and do-while Loon

' BASISFOR
COMPARISON

WHILE

General Form while { condition) {
statements; //body of loop

h

DO-WHILE

dof
statements; // body of loop.

¥ while(Condition);

Controlling In ‘while' loop the controlling In 'do-while’ loop the controlling

Condition condition appears at the start of the condition appears at the end of the
loop. loop.

Tterations The iterations do not occur if, the The iteration occurs at least once
condition at the first iteration, even if the condition is false at the
appears false. first iteration.

60
for loop

BlIFor Loop is used to execute set of statements repeatedly until the condition is true.

Syntax for (initialization; condition; increment/decrement)

{

// code block to be executed
}
Initialization : It executes at once.
Condition This check until get true.

Increment/Decrement: This is for increment or decrement.

61

Example 1 Output

class ForlLoopExampls { ;
public static void main(String[] args) { X
for(int i=1;i<=18;i++){ 4
System.out.println(i); s
}

} 6
7
8
} 9
10

Press any key to continue . . .

62
Example 2 Output

class ForLoopExample {
public static void mein(String[] args) {

for{int x = 155 x < 255 = x * A)
System.out.print("value of x "+ x);
System.out.print("\n");

value of x - 15
value of x - 16
value of x - 17
value of x : 18
value of x - 19
value of x - 20
value of x - 21
value of x : 22
value of X - 23
value of x - 24
Press any key to confinue . .

63

m For-each or Enhanced For Loop

The for-each loop is used to traverse array or collection in java. It is easier to use than simple for

loop because we don't need to increment value and use subscript notation.
syntax fOr (type variableName :
arrayName)

{

// code block to be executed

64

Example Output
r¥ 10
Demonstrate the +tor each loop. 11
save file "FortEachExample.java". 12
24 13

14

public class ForEachExample { Press any key to continue

public static wvoid main{String[] args) {
int array[]={18,11,12,13,14};
for{int i:array){
System.out.printin(i);

¥

Lt

65

FlLabeled For Loop

RlAccording to nested loop, if we put break statement in inner loop,
compiler will jump out from inner loop and continue the outer loop
again.

RBWhat if we need to jump out from the outer loop using break

statement given insideinner loop?The answer is, we should

define label along with colon(:) sign before loop. Syntax labelname:

for(initialization; condition; increment/decrement)

{

//code to be executed

}

66

Loop without label Loop with label
fOr(i e) labeltEforl i s,)
TN i
| {o]f fe) label2: for(..................)
TR {
i t_)r_e_a; AT break labell; ——
e e
e e e
__ 4—

Example without labelled loop

Output

class Withoutlabelledioop

{
{

int 195
for(i=1;i<=16;i++)
1
System.out.println();
for(j=1;3<=18;j++)
{
System.out.print(j
if(j==5)
break;

public static void main(String args[])

)

//Statement 1

o

o W

N NN NN NN NN N
(8]

W W W W W WwWwwww
R R T . S - S =
[$]]

P A (L St QR (N (LS K G S ¢
(SIS]

68

Example with labelled loop

Output

class Withlabelledloop

1
{

int 1i,3j;

loopl: for(i=1;i<=18;i++)

{
System.out.println()};
loop2: for(j=1;j<=10;j++)
{

if(j==5)
break loopi;

System.out.print(j + " "

public static void main(String args[])

123 4 5 Press any key to continue . . .

69

Press any key to continue .

ump Statements

Java Break Statement
BIThe Java break statement is used to break loop or switch statement

@ It breaks the current flow of the program at specified condition

BIWhen a break statement is encountered inside a loop, the loop is immediately terminated and

the program control resumes at the next statement following the loop.

Bln case of inner loop, it breaks only inner loop.

70

Example 1

class SampleBreak

{
public static void main(String args[])

{
int num= 1;
while (num <= 19) {

System.out.println{num);

if(num==5)
1

break;
¥
num++;

71

Example 2

//inside the for loop.
public class BreakExample {
public static void main(String[] args) {
/{using for loop
for(int i=1;i<=10;i++){
if(i==5){
//breaking the loop
break;
¥
System.out.printin{i);

//3ava Program to demonstrate the use of break statement

Output:

Bow o op e

72

Example 3

//lava Program to illustrate the use of break statement
//inside an inner loop
public class BreakExample2 {
public static void main(String[] args) {
/fouter loop
for(int i=1;i<=3;i++){
//inner loop
for(int j=1;j<=3;j++ X
if(i==2&8j==2){

break;

¥

System.out.printin(i+" "+j);

//using break statement inside the inner loop

Qutput:

w w w N PR
w N W N e

73

Example 4

/{Java Program to demonstrate the use of break statement
//inside the Java do-while loop. OUtpUt:
public class BreakDoWhileExample {

public static void main(String[] args) {

//declaring variable

1
inti=1;
/fdo-while loop 2
do{ 3
if(i==5){
4

//using break statement

i+

break;//it will break the loop
¥
System.out.printin(i};
i++;

Fwhile(i<=10);

74

Java Continue Statement
BAThe Java continue statement is used to continue the loop

BIThe continue statement is used in loop control structure when you need to jump to the next iteration
of the loop immediately

Bt continues the current flow of the program and skips the remaining code at the specified condition.

In case of an inner loop, it continues the inner loop only.

75

Example 1

//Java Program to demonstrate the use of continue statement
//inside the for loop.
public class ContinueExample {
public static void main(String[] args) {
//for loop
for{int i=1;i<=10;i++){
if(i==5){
//using continue statement
continue;//it will skip the rest statement
¥
System.out.printin(i);

Output:

W oo Ny e WM e

ey
®

76

Example 2

//Java Program to illustrate the use of continue statement
//inside an inner locp
public class ContinueExample2 {
public static void main(String[] args) {
/fouter loop
for(int i=1;i<=3;i++){
[/inner loop
for(int j=1;j<=3;j++)}{
if(i==2&8j==2){
//using continue statement inside inner loop
continue;
¥

System.out.printin(i+" "+j);

Output:

W W W N R R e
Ww N = W = W N e

77

Example 3

/{Java Program to demonstrate the use of continue statement Output:
//inside the while loop.
public class ContinueWhileExample {
public static void main(String[] args) { 1
//while loop
inti=1; 2
while(i<=10){ 3
if(i==5}{ 4
//using continue statement
i++; 6
continue;//it will skip the rest statement 7
; 8
System.out.printin(i);
i++; a
¥ 12
78
Example 4

main({ String args[])} {

System.out.println(i);

L8 o I N S N

79

ARRAY

® An array is a collection of similar data types.

® Java array is an object which contains elements of a similar data type.

® The elements of an array are stored in a contiguous memory location

® the size of an array is fixed and cannot increase to accommodate more elements

® |t is also known as static data structure because size of an array must be specified at the time of
declaration.

® Array in Java is index-based, the first element of the array is stored at the Oth index

80

its

e Java provides the feature of anonymous arrays which is not

available in C/C++.

Element
First index (at index 8)

i1 2 8 4 5§ 6 7 \8 9 —Indices

g
b b b o i fi [

«— Arraylength iIs 10 —— >

Advantage of Java Array

e Code Optimization: It makes the code optimized, we can retrieve or

sort the data easily.

e Random access: We can get any data located at any index position.

81

Disadvantage of Java Array

® Size Limit: We can store the only fixed size of elements in the array. It doesn't grow its size at
runtime. To solve this problem, collection framework is used in java. Features of Array

® It is always indexed. The index begins from O.

® |t is a collection of similar data types.
® |t occupies a contiguous memory location. Types of Java Array
® Single Dimensional Array

® Multidimensional Array

82

Single Dimensional Array in java

Array Declaration
Syntax: datatype[] arrayname;
Eg : int[]arr;

char[] name;

short[] arr;

long[] arr;

int[][] arr; //two dimensional array

In C program datatype arrayname[];

83

Initialization of Array

new operator is used to initializing an array.

Egl : int[]arr= new int[10];

or
int[] arr ={10,20,30,40,50};

Eg2: String[] cars ={"Volvo", "BMW", "Ford", "Mazda"};

Eg3: double[] myList = new double[10];

84

Accessing array element

Example: To access 4th element of a given array
int[] arr={10,24,30,50};
System.out.printIn("Element at 4th place" + arr[3]);

Bl To find the length of an array, we can use the following syntax:
array_name.length

Example: public class MyClass

{

public static void main(String[] args)

{
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.printin(cars.length);

}
} Output 4

85

Loop Through an Array
public class MyClass
{
public static void main(String[] args)
{
String[] cars ={"Volvo", "BMW", "Ford", "Mazda"};
for (inti=0; i< cars.length; i++)
{

System.out.printin(cars[i]);

Loop Through an Array with For-Each
public class MyClass
{
public static void main(String[] args)
{
String[] cars ={"Volvo", "BMW", "Ford", "Mazda"};
for (String i : cars)
{

System.out.printin(i);

class ArrayDemo{ Output
public static void main(String args[]){

0
int array[] = new int[7]; array[U]
for (int count=8;count<7;count++){ array[1]

array[count]=count+1;

N3

) array[2] = 3
array[3] = 4
for (int count=0;count<7;count++){ array[4] = 5
System.out.printin("array["+count+"] = "+array[count]); N
} array[s] = &
) array[s] = 7
88
public class ArrayExample {
public static void main(String[] args) {
double[] myList = {3.9, 5.9, 22.4, 31.5}; Output
// Print all the array elements :"' 9
for (int i = 8; i < mylList.length; i++) { o
System.out.printin(myList[i] + " "); 2, J
) 22.4
// Summing all elements A =
double total = 8; 31.9
for (int i = 8; i < mylList.length; i++) { ney 7
total += myList[i]; Total is 63.7
} Max is 315
System.out.println("Total is " + total); dax 1s 31.5

// Finding the largest element

double max = myList[e];

for (int i = 1; i < mylList.length; i++) {
if (myList[i] > max) max = myList[i];

3

System.out.printIn("Max is " + max);

Two Dimensional array Column0 Columni Column 2

Array Declaration Row 0

x[0][1] | x[0][2]

Syntax: datatype[][]arrayname; Row 1

x[1011 | x[1][2]

Eg: int[][] myNumbers ; Row 2

x[2][1] | x[2][2]

Array Initialization
int[][] arrName = new int[10][10];
Or

int[][] arrName ={{1,2,3,4,5},{6,7,8,9,10},{11,12,13,14,15}};

5 is the size of the array.

// 3 by

90

/{Java Program to illustrate the use of multidimensional array

class Testarray3{

public static void main(String args[]){

//declaring and initializing 2D array

int arr{]1[1={{1,2,3},{2,4,5}.{4,4,5}};

//printing 2D array

for(int i=0;i<3;i++){

for(int j=0;j<3;j++){
System.out.print(arr[i](j1+" ");

¥

System.out.printin();

b3

1}

Output

1 3 3
245
445

91

//3ava Program to demonstrate the addition of two matrices in Java Output

class Testarray5{

public static void main(String args[1){
//creating two matrices 2 6 8
int a[1[1={{1,3,43.,{3,4,5}};
int b[1[1={{1,3,4},{3,4,533; 6 8 16
//creating another matrix to store the sum of two matrices
int c[][]=new int[2][3];

//adding and printing addition of 2 matrices
for(int i=0;i<2;i++){

for(int j=0;j<3;j++){
clilljl=20i1lj1+billj1;
System.out.print(c[il[j1+" ");

¥

System.out.printin();//new line

3

¥

92

e Strings are used for storing text

e A String variable contains a collection of characters surrounded
by double quotes

Eg: Create a variable of type String and assign it a value

String greeting = "Hello";

AL A\
() ® O Output
MyClass. java

Hello
public class MyClass {

public static void main(String[] args) {
String greeting = "Hello";
System.out.println(greeting);
3
by

93

e In Java, string is basically an object
char values

e An array of characters works same as Java string. For example:

char[] ch={j,'0','s, €', ‘p' h');

String s= new String(ch); //converting char array to string

IS same as

String s="joseph"; //creating string by java string literal

that represents sequence of

94

String Length

e Thelength of a string can be found with the

a0

MyClass.java

length() method

public class MyClass {
public static void main(String[] args) {
String txt = "ABCDEFGHIJKLMNOPQRSTUVKWXYZ";

System.out.println(“The length of the txt string is: “

+ txt.length());
i

2 b
J

Output

The length of the txt string is: 26

toUpperCase() and toLowerCase()

Output
HELLO WORLD

hello world

@ S o
MyClass.java

public class MyClass {
public static void main{(Stringl[] args) {
String txt = "Hello llorld™;
System.out.println(txt.tcUpperCase());
System.out.println{txt.tolLowerCase());

L

e

96

Finding a Character in a String
The indexOf() method returns the index (the position) of the first

occurrence of a specified text in a string (including whitespace)

Output

7

a0 o0
MyClass.java

public class MyClass {
public static void main(String[] args) {
String txt = "Please locate where 'locate' occurs!”;
System.out.println(txt.index0f("locate™));
i

1
J

97

e The

String Concatenation

+ operator can be used between strings to combine them. This
is called concatenation

a O 0
MyClass.java

public class MyClass {

public static void main(String args[]) {

String firstName = "John";
String lasthame = "Doe";
System.out.println(firstMName + " " + lastName);
¥
¥
Output John Doe

98

e We can also use the

concat() method

concat() method to concatenate two strings:

@

!

—

S 0

MyClass.java

public class MyClass {

public static void main(String[] args) {

String firstMame = "John “;
String lastMame = "Doe";

System.out.println(firstName.concat(lasthame));

Output John Doe

99

Special Characters

Consider the following example
String txt = "We are the so-called "Vikings" from the north.";

e Because strings must be written within quotes, Java will
misunderstand this string

¢ The solution to avoid this problem, is to use the backslash escape

character
Escape character Result Description
\' ' Single quote
& * Double guote
\\ \ Backslash

100

a O 0
MyClass java

public class MyClass {
public static void main(String[] args) {
String txt = "We are the so-called \"Vikings\" from the north.";
System.out.println(txt);

¥
¥

Output We are the so-called "Vikings" from the north.
The sequence \" inserts a double quote in a string
The sequence \' inserts a single quote in a string

The sequence \\ inserts a single backslash in a string

101

Adding Numbers and Strings

¢ Java uses the + operator for both addition and concatenation.

o If we add two strings, the result will be a string concatenation

a O 0

MyClass.java Output
public class MyClass | 1020
public static void main(String[] args) {
String x = "1@";
String y = "20%;
String z = x + ¥;

System.out.println(z);

—

e If we add a number and a string, the result will be a string

concatenation

RN C

2
*

MyClass. java Output

public class MyClass { 1020

public static void main(String[] args) {
String x = "1@";
int y = 20;
String z = X + ¥;
System.out.printin(z);

—

MODULE 2

OBJECT ORIENTED PROGRAMMING IN
JAVA

Classes and Objects

¢ Classes and objects are the two main aspects of object-oriented

rogramming. :
progra & class objects

Fruit Apple
Banana

Mango

¢ So, a class is a template for objects, and an object is an instance

of a class.

e AClassis a "blueprint" for creating objects.

EPULINE

Create a Class

e To create a class, use the keyword

Create an Object

class

e To create an object of MyClass, specify the class name, followed by

the object name, and use the keyword

new

public class MyClass {
int x = 5;

r

public class MyClass 1
int x = 5;

public static void main(String[] args) {
MyClass myObj = new MyClass();
System.out.println(myObj.x);

‘\
J

—

Multiple Objects

¢ You can create multiple objects of one class

public class MyClass
int x = 5;

public static void

MyClass myObjl
MyClass myObj2

[

-

-

main{String[] args) {
new MyClass();
new MyClass(); // Object 2
System.out.println(myObjl.x);
System.out.println(myObj2.x);

// Object 1

Initialize the object through a reference variable

class Student{

int id;
ey Output
String name;

3 101 sonoo
class TestStudent2{

public static void main(String args[]){

Student s1=new Student();

51.id=101;

sl.name="Sonoo";

System.out.printin(si.id+" "+sl.name);//printing members with a white space

3

BlUsing Multiple Classes
® We can also create an object of a class and access it in another class.
® This is often used for better organization of classes

® One class has all the attributes and methods, while the other class holds the main() method (code to
be executed).

® Remember that the name of the java file should match the class name.

® In the following example, we have created two files in the same directory/folder:
MyClass.java
OtherClass.java

MyClass.java

r

public class MyClass 1
int x = 5;

¥

OtherClass.java

class OtherClass |
public static void main(String[] args) {
MyClass myObj = new MyClass();
System.out.println(myObj.x);

¥

N
J

e Class attributes are variables within a class
Example

Create a class called "MyClass" with two attributes x and y

public class MyClass {
int x = 5;
int y = 3;

et

e Another term for class attributes is fields / Data members

Accessing Attributes
e We can access attributes by creating an object of the class, and by

using the dot syntax ()
Example

Create an object called "myObj" and print the value of x

public class MyClass |
int x = 5;

public static void main(String[] args) { Output
MyClass myObj = new MyClass();
System.out.println(myObj.x};

—

Modify Attributes

¢ We can also modify attribute values
Example

Set the value of x to 40

public class MyClass {
int x;

Output

public static void main(String[] args) 1 40
MyClass myObj = new MyClass();
myObj.x = 48;
System.out.println(myObj.x);

—

Override existing values

Example

Change the value of x to 25

public class MyClass {

int x = 16; Output
_ 25
public static void main(String[] args) {
MyClass myObj = new MyClass();
myObj.x = 25; // x is now 25
System.out.println(myObj.x);

s

If you don't want the ability to override existing values, declare

the attribute as fl na|

public class MyClass {
final int x = 10;

public static void main(String[] args) {
MyClass myObj = new MyClass();

System.out.println(myObj.x);
¥

1
J

myObj.x = 25; // will generate an error: cannot assign a value to a final variable

The final keyword is useful when we want a variable to always
store the same value, like P (3.14159...)

The final keyword is called a "modifier".

Multiple Objects

If we create multiple objects of one class, you can change the
attribute values in one object, without affecting the attribute
values in the other

Example - Change the value of x to 25 in myObj2, and leave x in

myObj1 unchanged public class MyClass {

int x = 5;

public static void mein(String[] args) {
MyClass myObjl = new MyClass(); // Object 1
MyClass myObj2 = new MyClass({); // Object 2
myObj2.x = 25;
System.out.println(myObjl.x); // Outputs 5
System.out.println(myObj2.x); // Outputs 25
¥

Multiple Attributes

We can specify as many attributes as you want

public class Person {
String fname = "John";
String lname = "Doe";
int age = 24;

public static void main(String[] args) {
Person myObj = new Person();

System.out.println(“Name: + myObj.fname +

System.out.println("Age: " + myObj.age);

+ myObj.lname);

[

—

Methods are declared within a class, and that they are used to

perform certain actions

Example - Create a method named myMethod() in MyClass

public class MyClass {
static void myMethod() {
System.out.println("Hello World!");
¥
1

myMethod() prints a text (the action), when it is called.

To call a method, write the method's name followed by two

parentheses () and a semicolon;

Example

Inside main, call myMethod()

public class MyClass {
static void myMethod() {
System.out.println("Hello World!");

-

public static void main(String[] args) {
myMethod() ;

L

[V

// Outputs "Hello World!"

Static vs. Non-Static Methods

Java programs have either static or public attributes and methods.

Static method can be accessed without creating an object of the

class

Public methods can only be accessed by objects

Example

The differences between static and public methods

r

public class MyClass {
// Static method
static void myStaticMethod() {
System.out.println("Static methods can be called without creating objects");

// Public method
public void myPublicMethod() {
System.out.println("Public methods must be called by creating objects");

// Main method

public static void main{String[] args) {
myStaticMethod(); // Call the static method
// myPublicMethod(); This would compile an error

MyClass myQObj = new MyClass(); // Create an object of MyClass
myObj .myPublicMethod(); // Call the public method on the object

1
i

fa—

public class Car {

// Create a fullThrottle() method
public void fullThrottle() {

System.out.println("The car is going as fast as it can!");
1
3

// Create a speed() method and add a parameter
public void speed(int maxSpeed) {

Access Methods With | ;

an Object // Inside main, call the methods on the myCar object

public static void main(String[] args) {

System.out.println(“Max speed is: " + maxSpeed);

Car myCar = new Car(); // Create a myCar object
myCar.fullThrottle(); // Call the fullThrottle() method
myCar.speed(200); // Call the speed() method

}

// The car is going as fast as it can!
// Max speed is: 200

Remember that..

® The dot (.) is used to access the object's attributes and methods.

® To call a method in Java, write the method name followed by a set of parentheses (), followed by a
semicolon (;) Using Multiple Classes

¢ It is a good practice to create an object of a class and access it in another class.

®* Remember that the name of the java file should match the class name. In this example, we have
created two files in the same directory:

Car.java
OtherClass.java

Carjava

public class Car {
public void fullThrottle() {
System.out.println("The car is going as fast as it can!");

&
J

public void speed(int maxSpeed) {
System.out.println("Max speed is: " + maxSpeed);

1

J

}

OtherClass.java

class OtherClass {

public static void main(String[] args) {

Car myCar = new Car(); // Create a myCar object
myCar.fullThrottle(); // Call the fullThrottle() method
myCar.speed(200); // Call the speed() method

}

¥

CONSTRUCTORS

A constructor in Java is a special method that is used to initialize

objects.
The constructor is called when an object of a class is created.
It can be used to set initial values for object attributes
Types of Java constructors
Default constructor (no-argument constructor)

Parameterized constructor

Syntax of default constructor:

<class_name>(){}

Bln the following example, we are creating the no-argument
constructor in the Bike class. It will be invoked at the time of object creation.

//Java Program to create and call a default constructor
Output class Bikel{

Bike is created //creating a default constructor

Bike1(}{System.out.printin("Bike is created");

//main method

public static void main{String args[]){

//calling 2 default constructor

Bikel b=new Bikel();

7

¥

If there is no constructor in a class, compiler automatically creates
a default constructor.

class Bike {

The purpose of a default constructor

¢ The default constructor is used to provide the default values to the
object like 0, null, etc., depending on the type.

// Create a MyClass class
public class MyClass {
int x; // Create a class attribute

// Create a class constructor for the MyClass class
public MyClass() {

x =5; // Set the initial value for the class attribute x

public static void main(String[] args) {

MyClass myObj = new MyClass(); // Create an object of class MyClass (This will call the constructor)
System.out.println(myObj.x); // Print the value of x

}
¥

// Outputs 5

The constructor name must match the class name, and it cannot

have a return type (like void).
The constructor is called when the object is created.
All classes have constructors by default

If you do not create a class constructor yourself, Java creates one
for you. However, then you are not able to set initial values for

object attributes.

Constructor Parameters (Parameterized constructor)

Constructors can also take parameters, which is used to initialize

-

attributes public class MyClass {
int x;

public MyClass{int y) {
X =Y;

public static void main(String[] args) {
MyClass myObj = new MyClass(5);

System.out.println(myObj.x);

// Outputs 5

| A constructor is used to initialize the state of an object.

Constru tor Pa rameters _ We can have as many parameters as
you want public class Car {
int modelYear;
String modellName;
public Car(int year, String name) {
modelYear = year;
modelName = name;
1
public static void main(String[] args) {
Car myCar = new Car(1969, "Mustang");
System.out.println(myCar.modelYear + " " + myCar.modellame);
}
}
// Outputs 1969 Mustang
Java Constructor Java Method

A constructor must not have a return type.

| object.

\
The constructor is invoked implicitly. | The method is invoked explicitly.

|
The constructor name must be same as the class name.

The Java compiler provides a default constructor if you don't have any

constructor in a class. case.

| class name.

\
A method is used to expose the behavior of an

A method must have a return type.

The method is not provided by the compiler in any

The method name may or may not be same as the

e With method overloading , multiple methods can have the same
name with different parameters

e Method overloading is one of the ways that Java supports
polymorphism.

There are two ways to overload the method in java
By changing number of arguments

By changing the data type

Example

int myMethod(int x)
float myMethod(float x)
double myMethod(double x, double y)

Advantage of method overloading
¢ The main advantage of this is cleanliness of code.

¢ Method overloading increases the readability of the program.

o Flexibility

Example - Consider the following example, which have two methods

that add numbers of different type

static int plusMethodInt(int x, int y) {
return X + y;

—

static deuble plusMethodDouble(double x, double y)
return X + y;

~

¥

public static void main(String[] args) {
int myNuml = plusMethodInt(8, 5);
double myMum2 = plusMethodDouble(4.3, 6.26);
System.out.println(“int: " + myNuml);
System.out.println(“double: " + myNum2);

[

Instead of defining two methods that should do the same thing, it is

better to overload one. static int plusMethod(int x, int y) {

return x + y;

—

static double plusMethod(double x, double y) {
return x + y;

—

public static void main(String[] args) {
int myMuml = plusMethod(8, 5);
double myNum2 = plusMethod(4.3, 6.26);

System.out.printin{“int: + myNuml) ;

System.out.println{“"double: " + myNum2);

e

e Recursion is the technique of making a method call itself.

o This technique provides a way to break complicated problems
down into simple problems which are easier to solve.

Syntax

returntype methodname(){
//code to be executed

methodname();//calling same method

¥

public class MyClass { Working

public static void main(String{] args) { RSO0

int result = sum(19); 10 + (9 + sum(8))
10+ (9+(8+sum(7)))

System.out.println(result);

} 10+9+8+74+64+5+4+3+2+1+sum(0)
10+9+8+7+6+54+44+3+2+1+0

public static int sum(int k) {
if (k> @) {
return k + sum(k - 1);

Example

JRTae § Use recursion to add all of the

return 0; numbers up to 10.

h
¥
¥

public class RecursionExample3 {

static int factorial(int n){

if (n==1)
return 1;
else

return(n * factorial{n-1));

public static void main(String[] args) {
System.out.printin("Factorial of 5 is: "+factorial(5));
b

b

Working

factorial({5s)
factorial(4)
factorial(3)
factorizl(2)
factorial(l)
return 1
return 2¥1 = 2
return 3*2 =6
return 4%6 = 24
return 5%24 = 120

Example

Factorial of a number

USING OBJECT AS A PARAMETER / ARGUMENT

class Operation2{
int data=50;

void change(Operation2 op){
op.data=op.data+100;//changes will be in the instance variable

¥

public static void main(String args[1)}{

Operation2 op=new Operation2();

System.out.printin("before change "+op.data);
op.change(op);//passing object

System.out.printin("after change "+op.data);

Qutput:before change 50
after change 15@

THIS KEYWORD

EIThere can be a lot of usage of java this keyword. In java, this is a reference variable that refers to
the current object. Usage of java this keyword

® this can be used to refer current class instance variable.
® this can be used to invoke current class method (implicitly)
® this() can be used to invoke current class constructor.

® this can be passed as an argument in the method call.

® this can be passed as argument in the constructor call.

class Student{

int rollno;

Output

String name;

float fee;

Student(int rolino,String name, float fee){ 8 n U 11 8 . e

rolino=rollno;
g 8 null .0
fee=fee;
¥
void display(){System.out.printin(rollno+" "+name+" "+fee);}
¥

class TestThisi{

public static void main(String args[]){

Student si=new Student(111,"ankit",5000f); Understanding the problem
Student s2=new Student({112,"sumit",6000f);
si.display(); without this keyword
s2.display();

33

class Student{

int rolino;

String name;

float fee;

Student(int rollno,String name,float fee){

this.rolino=rollno;

this.name=name;

this.fee=fee;

b

void display(){System.out.printin(rollno+" "+name+" "+fee);}

b

class TestThis2{

public static void main(String args[1){
Student st=new Student(111,"ankit",5000f);
Student s2=new Student(112,"sumit",6000f);
s1.display();

s2.display();

¥

111 ankit 5008
112 sumit 6008

Solution of the problem

with this keyword

® |t is better approach to use meaningful names for variables. So we use same name for instance

variables and parameters in real time, and always use this keyword.

this: to invoke current class method

® You may invoke the method of the current class by using the this keyword.

® If you don't use the this keyword, compiler automatically adds this keyword while invoking the

method

class A{
void m{){System.out.printin("hello m");}
void n()}{

Output
System.out.printin("hello n");

//m();//same as this.m() hello n
this.m();

. hello m

B2

class TestThis4{

public static void main{String args[])}{
A a=new A();

a.n();

33

JAVA INNER CLASS

In Java, it is also possible to nest classes (a class within a class

The purpose of nested classes is to group classes that belong

together, which makes your code more readable and maintainable.

To access the inner class, create an object of the outer class, and

then create an object of the inner class

class OuterClass {

int x = 18;

class InnerClass {
int y = 5;

]

e

public class MyMainClass {

OuterClass.InnerClass myInner

(]

e

// Outputs 15 (5 + 18)

public static void main(String[] args) {
OuterClass myQOuter = new OuterClass();

System.out.println(myInner.y + myOuter.x);

= myOuter.new InnerClass();

Access Outer Class From Inner Class

class QuterClass {

int x = 10;

class InnerClass {
public int myInnertethod() {
return x;

¥

fu—

—

public class MyMainClass {
public static void main(String[] args) {
OuterClass myOuter = new OuterClass();
OuterClass.InnerClass myInner = myQuter.new InnerClass();
System.out.println(myInner.myInneriethod());
h
J

X
J

// Outputs 10

One advantage of inner classes,
is that they can access attributes

and methods of the outer class

® Sometimes we want to pass information into a program when we run it. This is accomplished by
passing command-line arguments to main().

® The main method can receive string arguments from the command line

® To access the command-line arguments inside a Java program is quite easy— they are stored as
strings in a String array passed to the args parameter of main().

® The first command-line argument is stored at args[0], the second at args[1], and so on.

// Display all command-line arguments.

class CmdLine {

public static void main(String args[]) {
for(int i=8; i<args.length; i++)

L System.out.println("args[" + i + "]:

3

+args[i]);

C:\Users\Hello World\Desktop\JAVA=javac CmdLine. java

C:\Users\Hello World\Desktop\WJAVA=java CmdLine This is Commend-Line Argument Example
args[0]: This

args[1]: is

argsf2]: Commend-Line
args[3]: Argument
argsf[4]: Example

C:\Users\Hello World\DesktopWJAVA=

CHAPTER -3
INHERITANCE

INHERITANCE IN JAVA

® Inheritance in Java is a mechanism in which one object acquires all the properties and behaviors of
a parent object.

® The idea behind inheritance in Java is that you can create new classes that are built upon existing
classes.

® When you inherit from an existing class, you can reuse methods and attributes of the parent class.
Moreover, you can add new methods and attributes in your current class also

® Inheritance represents the IS-A relationship which is also known as a parent-child relationship.

BETerms used in Inheritance

Class: A class is a template or blueprint from which objects are created.

Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a derived clasg
extended class, or child class.

7

Super Class/Parent Class: Superclass is the class from where a subclass inherits the features. It is also
called a base class or a parent class.

Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse the
attributes and methods of the existing class when you create a new class. We can use the same
attributes and methods already defined in the previous class.

BlAccess Modifiers - There are four types of Java access modifiers:

Private: The access level of a private modifier is only within the class. It cannot be accessed from
outside the class.

Default: The access level of a default modifier is only within the package. It cannot be accessed from
outside the package. If you do not specify any access level, it will be the default.

Protected: The access level of a protected modifier is within the package and outside the package
through child class. If you do not make the child class, it cannot be accessed from outside the
package.

Public: The access level of a public modifier is everywhere. It can be accessed from within the class,
outside the class, within the package and outside the package.

Access Modifier ~ within class within package outside package by subclass only outside package
Private ‘ Y N N . N
Default Y | Y | N | N
| Protected ‘ Y | Y | ¥ N
Public Y | Y | Y | Y

BIThe syntax of Java Inheritance

Lias5S oUullidoo™alllE CALENRQS oupciLiass~idilic

{
//methods and fields

h

BAThe extends keyword indicates that you are making a new class that derives from an existing class.
BEThe meaning of "extends" is to increase the functionality.

Bln the terminology of Java, a class which is inherited is called a parent or superclass, and the new
class is called child or subclass.

e Programmer isthe subclass (child class)

\

e Employee isthe superclass (Parent class) Employee

¢ The relationship between the two classes

salary: float

is Programmer IS-A Employee

e It means that Programmer is a type of k /

L%
7 R

Programmer

Employee.

bonus: int

N _/

class Employee{

float salary=40000;

by

class Programmer extends Employee{

int bonus=10000;

public static void main{String args[])}{
Programmer p=new Programmer{);
System.out.printin{"Programmer salary is:"+p.salary);

System.out.println("Bonus of Programmer is:"+p.bonus);

S N

Output

Programmer salary is5:40000.2

Bonus of programmer is:16000@

e Programmer object can access the attribute of its own class as

well as of Employee class i.e. code reusability.

| |Bl Types of inheritance in java

On the basis of class, there can be three types of inheritance in

java: single , multilevel and hierarchical
ClassA ClassA ClassA
7y 7'y / \
ClassB ClassB ClassB ClassC
A
1) Single 3) Hierarchical
ClassC
2) Multilevel

class Vehicle {

protected String brand = "Ford"; // Vehicle attribute

public void honk() { // Vehicle method
System.out.println("Tuut, tuut!”);

i)

T

class Car extends Vehicle {
private String modelName = "Mustang"; // Car attribute
public static void main(String[] args) {

// Create a myCar object
Car myCar = new Car();

// Call the honk() method (from the Vehicle class) on the myCar object
myCar.honk();

// Display the value of the brand attribute (from the Vehicle class) and the value of the modelName

"o

System.out.println(myCar.brand + + myCar.modelName) ;

BThe super keyword in Java is a reference variable which is used to refer immediate parent class
object. Usage of Java super Keyword

® super can be used to refer immediate parent class instance variable.
® super can be used to invoke immediate parent class method.

® super() can be used to invoke immediate parent class constructor.

BEWe can use super keyword to access the data member (attribute) of parent class. It is used if parent

class and child class have same attribute.
11

class Animal{

String color="white";

¥

class Dog extends Animal{
String color="black";

void printColor(){

System.out.printin{color);//prints color of Dog class

System.out.println{super.color);//prints color of Animal class

::

¥

class TestSuperi{

public static void main{String args[])}{
Dog d=new Dog{);

d.printColor();

33X

output

black

white

Animal and Dog both classes have a
common property color. If we print

color property, it will print the color
of current class by default. To access
the parent property, we need to use
super keyword.

class Animal{

void eat(){System.out.printin("eating...");

¥

class Dog extends Animal{

void eat(){System.out.printin("eating bread...");}
void bark(){System.out.println("barking..."); ¥
void work{)<{

super.eat();

bark();

¥

¥

class TestSuper2{

public static void main(String args[1){

Dog d=new Dog();

d.work();

73

Output —

eating...

barking...

The super keyword can also be
usedto invoke(call) parent class
method.

In the above example Animal and Dog both classes have eat()

method

If we call eat() method from Dog class, it will call the eat() method

of Dog class by default because priority is given to local.

To call the parent class method, we need to use

super keyword.

14

class Animal{

Animal(}{System.out.printIn("animal is created"); ;

-

£

class Dog extends Animal{

Dog(}{

super();

System.out.printin("dog is created");
s

s

class TestSuper3{

public static void main{String args[]){
Dog d=new Dog();

¥r

The super keyword can also
be used to invoke the parent

class constructor

Output

animal is created

dog is created

15

Calling order of constructors in inheritance

(child)class.

and then derived class constructor get called implicitly.

constructor.

BlOrder of execution of constructors in inheritance relationship is from base (parent) class to derived

BEWe know that when we create an object of a class then the constructors get called automatically.

Bln inheritance relationship, when we create an object of a child class, then first base class constructc

Blln simple word, we can say that the parent class constructor get called first, then of the child class

16

Dr

class A {
AD{
System.out.printin("Inside A's constructor.");
¥
}
— // Create a subclass by extending class A.
class B extends A {
B(){
System.out.printin("Inside B's constructor.");
i

}
// Create another subclass by extending B.
class C extends B {
c0{
System.out.printin("Inside C's constructor.");
}
}
public class Main{
public static void main(String args|[])
{
Cc=new C();

}

17

METHOD OVERRIDING

BlIf subclass (child class) has the same method as declared in the parent class, it is known as method
overriding in Java.

Bln other words, If a subclass provides the specific implementation of the method that has been
declared by one of its parent class, it is known as method overriding

Usage of Java Method Overriding

® Method overriding is used to provide the specific implementation of a method which is already

Rules for Java Method Overriding

® The method must have the same name as in the parent class ® The method must have the same
parameter as in the parent class.

® There must be an IS-A relationship (inheritance). Remember.......

® A static method cannot be overridden. It is because the static method is bound with class whereas

instance method is bound with an object. Static belongs to the class area, and an instance belongs to
the heap area.

® Can we override java main method? - No, because the main is a static method.

Example - method overriding Output

//3ava Program to illustrate the use of Java Method Overriding

//Creating a parent class. Bike is running safely

class Vehicle{

//defining a method h defined th
void run(){System.out.printin("Vehicle is running"}); » B TS ISR e (U

} method in the subclass as
//Creating a child class defined in the parent class
class Bike2 extends Vehicle{ but it has some specific

//defining the same method as in the parent class i i
2 ; e : implementation. The name
void run(){System.out.printin("Bike is running safely"); }

and parameter of the method

public static void main{String args[]){ are the same, and there is IS-A
Bike2 obj = new Bike2();//creating object relationship between the
obj.run();//calling method .
5 classes, so there is method
3 overriding.
20
method overloading Vs. method overriding
‘No. Method Overloading Method Overriding
1) Method overloading is used to increase the readability of the program. Method overriding is used to provide the
specific implementation of the method that
is already provided by its super class.
2) Method overloading is performed within class. Method overriding occurs in two classes that
have IS-A (inheritance) relationship.
3) In case of method overloading, parameter must be different. In case of method overriding, parameter
must be same.
4) Method overloading is the example of compile time polymorphism. Method overriding is the example of run
time polymorphism.
5) In java, method overloading can't be performed by changing return type Return type must be same or covariant in
of the method only. Return type can be same or different in method method overriding.
overloading. But you must have to change the parameter.

The final keyword in java is used to

1. variable
2. method
3. class

Java final variable

e If you make any variable as final, you

final variable(It will be constant)

restrict the user. The java final

keyword can be used in many context. Final can be:

cannot change the value of

class Bike9{
final int speedlimit=90;//final variable
void run()}{
speedlimit=400;
¥
public static void main(String args[]){
Bike9 obj=new Bike9d();
obj.run();
i
}//end of class

B T JTe 3. m i - g - |
[ys 8 e ,Iéf.u-.w.\ N ;’r{,& v .r;s'&.é-n TN,

: g : 1 B Ry . '_E.“
et ple e rievie o i reent b ey S
|l l'"] [l ‘

t 1k

There is a final variable
speedlimit, we are going to
change the value of this
variable, but It can't be
changed because final variable
once assigned a value can

never be changed.

If we make any method as final,

Java final method

class Bike{

final void run(){System.out.printin("running"); >

¥

class Honda extends Bike{

void run{){System.out.printin{"running safely with 100kmph");}

public static void main(String args[]){
Honda honda= new Honda();
honda.run();
¥

3

we cannot override it

Qutput:Compile Time Error

24

Java final class

If we make any class as final, we cannot extend

final class Bike{}

class Honda1l extends Bike{

void run(){System.out.println("running safely with 100kmph");}

public static void main{String args[]){
Hondal honda= new Hondal();
honda.run(});

¥

it.

Qutput:Compile Time Error

Is final method inherited?

Yes, final method is inherited but you cannot override it. For

Example:

class Bike{

final void run(){System.out.println{"running...");}

b

class Honda2 extends Bike{

Output:running...

public static void main(String args[]}{
new Honda2().run();

¥

26

Points to Remember

1) A constructor cannot be declared as final.

2) Local final variable must be initializing during declaration.

3) We cannot change the value of a final variable.

4) A final method cannot be overridden.

5) A final class not be inherited.

6) If method parameters are declared final then the value of these parameters cannot be changed.

7) final, finally and finalize are three different terms. finally is used in exception handling and finaliz
is a method that is called by JVM during garbage collection.

® Data abstraction is the process of hiding certain details and showing only essential information to
the user.

® Abstract class: is a restricted class that cannot be used to create objects (to access it, it must be
inherited from another class).

® Abstract method: can only be used in an abstract class, and it does not have a body. The body is
provided by the subclass

(inherited from).

® An abstract class can have both abstract and regular methods:

| @ Abstract class Rules for Java Abstract class

it can have abstract and
non-abstract methods.

It cannot be instantlated.

It;can have final methods

\. 5 It can have constructors and static
methods also.

abstract class Animal {

et

public abstract void animalSound();
public void sleep() {
System.out.println("“Zzz");

From the example above, it is not possible to create an object of

the Animal class

Animal myObj = new Animal();

To access the abstract class, it must be inherited from another

class

// will generate an error

30

Example

// Abstract class
abstract class Animal 1
// Abstract method (does not have a body)
public abstract wvoid animalSound();
// Regular method
public void sleep() 1
System.out.printlin("Zzz");

¥

¥

// Subclass (inherit from Animal)
class Pig extends Animal {
public void animalSound() {
// The body of animalSound() is provided here
System.out.println("The pig says: wee wee™);

¥

29
J

class MyMainClass
public static void main(String[] args) {
Pig myPig = new Pig(); // Create a Pig object
myPig.animalSound();
myPig.sleep();
H

2
J

Example - Here Bike is an abstract class that contains only one
abstract method run. Its implementation is provided by the Honda

class.

abstract class Bike{ Output

abstract void run();
} running safely

class Honda4 extends Bike{

void run{){System.out.printin{"running safely");*
public static void main(String args[]){

Bike obj = new Honda4();

obj.run();

b

bs

32

THE OBIECT CLASS

® The Object class is the parent class of all the classes in java by default. In other words, it is the
topmost class of java.

® The Object class provides some common behaviors to all the objects such as object can be
compared, object can be cloned, object can be notified etc.

® Object class is present in java.lang package

® Every class in Java is directly or indirectly derived from the Object class

85

Methods of Object class

public final Class getClass() returns the Class class object of this object. The Class class can further be used to
get the metadata of this class.

‘ public int hashCode() returns the hashcode number for this object.

public boolean equals(Object obj) compares the given object to this object.
‘ protected Object clone() throws creates and returns the exact copy (clone) of this object.

CloneNotSupportedException

public String toString() returns the string representation of this object.
public final void notify() ' wakes up single thread, waiting on this object's monitor.
public final void notifyAll() wakes up all the threads, waiting on this object's monitor.

causes the current thread to wait for the specified milliseconds, until another thread
notifies {invokes notify(} or notifyAll() method).

. public final void wait(long

timeout)throws InterruptedException

34

® A package in Java is used to group related classes and interfaces

® Think of it as a folder in a file directory.

® We use packages to avoid name conflicts, and to write a better maintainable code

® Packages in Java is a mechanism to encapsulate a group of classes, interfaces and sub packages
which is used to providing access protection

® Package in Java can be categorized in two form, built-in package user-defined package

Built-in Package:-

java.lang, java.util etc.

| | @ User-defined-package:-

categorized classes and interface

Java

package

Existing Java package. for example, java.io.*,

created

&

va

|]

w |

lang io

vV

w W

rmi security net

i

nio

e

th

|

i

sql

javax

L,n’J

util

BFAdvantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily
maintained.

2) Java package provides access protection.

3) In real life situation there may arise scenarios where we need to define files of the same
name. This may lead to name-space collisions. Java package removes naming collision.

4) Reusability: Reusability of code is one of the most important requirements in the software
industry. Reusability saves time, effort and also ensures consistency. A class once developed can
be reused by any number of programs wishing to incorporate the class in that particular program.

5) Easy to locate the files.

java , java package

Subpackage
of java

System.class String.class Arraylist.class Map.class Button.class classes

To use a class or a package from the library, we need to use the

import keyword:

Syntax: import package.name.Class; // Import a single class

import package.name.*; [/ Import the whole package

//save as Simple.java
package mypack;

The package keyword is used publicielase:Simpley
public static void main(String args[]){

to create a package in java. System.out.printin{"Welcome to package");

¥

>

ccess Packages from another package
There are three ways to access the package from outside the package.

import package.*; import
package.classname; fully qualified
name
1. Using packagename.*
Blf we use packagename.* then all the classes and interfaces of this package will be accessible
but not subpackages.

BEThe “import” keyword is used to make the classes and interface of another package accessible
to the current package.

Example of package that import the packagename.*

//save by A.java
package pack;
public class A{
public void msg(){System.out.printin("Hello"); *
b

Output:Hello

//save by B.java

package mypack;
import pack.®;

class B{
public static void main(String args[]){
A obj = new A();
obj.msg();
¥
by

2 . Using packagename.classname //save by A.java

o If you import package.classname
package pack;

then only declared class of this public class A{
public void msg(){System.out.printin("Hello"}; }
package will be accessible. 3

//save by B.java

« Example — package mypack;

import pack.A;

class B{

public static void main(String args[]){

A obj = new A();
Output:Hello obj.msg();
¥
¥

3. Using fully qualified name

® |If we use fully qualified name then only declared class of this package will be accessible.

® Now there is no need to import. But you need to use fully qualified name every time when
you are accessing the class or interface.

® |tis generally used when two packages have same class name

e.g. java.util and java.sql packages contain Date class.

e Example of package by import fully qualified name

//save by A.java
package pack;
public class A{
public void msg(){System.out.printin("Hello"}; }

b
Output:Hello

//save by B.java

package mypack;
class B{
public static void main(String args[]){
pack.A obj = new pack.A();//using fully qualified name
obj.msg();
¥
¥

[] If we import a package, subpackages will not be imported.

Blif we import a package, all the classes and interface of that package will be imported excluding
the classes and interfaces of the subpackages.

| Hence, you need to import the subpackage as well Note: Sequence of the program must be
package then import then class.

package

l

import

l

class

INTEREACE

LI V1 7 VN

® Aninterface in Java is a blueprint of a class. It has static constants and abstract methods.

® The interface in Java is a mechanism to achieve abstraction. There can be only abstract methods
in the Java interface, not method body. It is used to achieve abstraction and multiple inheritance
in Java.

® In other words, you can say that interfaces can have abstract methods and variables. It cannot
have a method body.

® Like abstract classes, interfaces cannot be used to create objects
® Interface methods do not have a body - the body is provided by the "implement" class
® On implementation of an interface, you must override all of its methods

® Interface methods are by default abstract and public
® Interface attributes are by default public, static and final

® An interface cannot contain a constructor (as it cannot be used to create objects)

Declare an interface
BlAn interface is declared by using the interface keyword.

Bt provides total abstraction; means all the methods in an interface are declared with the
empty body, and all the fields are public, static and final by default.

BIA class that implements an interface must implement all the methods declared in the interface.

// interface

interface Animal {

public void animalSound(); // interface method (does not have a body)

BITo access the interface methods, the interface must be "implemented” by another class with
the implements keyword (instead of extends).

BIThe body of the interface method is provided by the "implement" class

BIThe relationship between classes and interfaces

class interface interface
X A X

extends | implements extends
|

class class interface

BlAs shown in the figure given above, a class extends another class, an interface extends another

interface, but a class implements an interface.

// Interface
interface Animal {

public void animalSound(); // interface method (does not have a body)

public void sleep(); // interface method (does not have a body)

o
J

// Pig "implements" the Animal interface
class Pig implements Animal {
public void animalSound() {
// The body of animalSound() is provided here
System.out.println("The pig says: wee wee");
1
public void sleep() {
// The body of sleep() is provided here
System.out.println("Zzz");

1
b

"

J

class MyMainClass {
public static void main(String[] args) {
Pig myPig = new Pig(); // Create a Pig object
myPig.animalSound();
myPig.sleep();

¥

Output

The pig says: wee wee

lz7

BEWhy And When To Use Interfaces

1)

(interface).

2)

because the class can implement multiple interfaces.

To achieve security - hide certain details and only show the important details of an object

Java does not support "multiple inheritance". Howeuver, it can be achieved with interfaces,

EINote: To implement multiple interfaces, separate them with a comma (see example below).

interface FirstInterface {

public void myMethod(); // interface method

1
I

interface SecondInterface {

public void myOtherMethod(); // interface method

1
J

class DemoClass implements FirstInterface, SecondInterface {
public void myMethod() { Output
System.out.println("Some text..");

Some text...

public void myOtherMethod() {
System.out.println("Some other text...");

1
¥

Some other text...

1
J

class MyMainClass o

public static void main(String[] args)
DemoClass myObj = new DemoClass();
myObJj .myMethod();
myObj .myOtherMethod();

e

i

' XCEPTION HANDLING

® Exception is an abnormal condition.

® InJava, an exception is an event that disrupts the normal flow of the program. It is an object
which is thrown at runtime.

® Exception Handling is a mechanism to handle runtime errors such as
ClassNotFoundException, IOException, SQLException, RemoteException, etc.

® The core advantage of exception handling is to maintain the normal flow of the application.
® An exception normally disrupts the normal flow of the application that is why we use

exception handling.

20

Let's take a scenario:

® Suppose there are 10 statements in your program and there occurs an exception at
statement 5, the rest of the code will not be executed i.e. statement 6 to 10 will not be
executed.

® If we perform exception handling, the rest of the statement will be executed. That is why we
use exception handling in Java.

statement 1;
statement 2;
statement 3;
statement 4;
statement 5;//exception occurs
statement 6;
statement 7;
statement 8;
statement 9;

statement 10;

Types of Java Exceptions

e There are mainly two types of exceptions: checked and
unchecked.
e Here, an error isconsidered as the unchecked exception

e According to Oracle, there are three types of exceptions:

Unchecked
Exception

Checked Exception
Unchecked Exception

Error

22

BIChecked Exception

® The classes which directly inherit Throwable class except RuntimeException and Error are

known as checked exceptions
® e.g. IOException, SQLException etc.

® Checked exceptions are checked at compile-time.

BlUnchecked Exception

® The classes which inherit RuntimeException are known as unchecked
exceptions

® e.g. ArithmeticException, NullPointerException,

® Unchecked exceptions are not checked at compile-time, but they are checked at runtime
23
Error
e Erroris irrecoverable

e e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Java Exception Keywords

Keyword Description

try The "try" keyword is used to specify a block where we should place exception code. The try block must be followed
by either catch or finally. It means, we can't use try block alone.

catch The "catch" block is used to handle the exception. It must be preceded by try block which means we can't use
catch block alone. It can be followed by finally block later.

finally The "finally" block is used to execute the important code of the program. It is executed whether an exception is
handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw an exception. It specifies that there may
occur an exception in the method. It is always used with method signature.

EiCommon Scenarios of Java Exceptions

A scenario where ArithmeticException occurs

® |f we divide any number by zero, there occurs an ArithmeticException. int a=50/0;
//ArithmeticException

BIA scenario where NullPointerException occurs

® |f we have a null value in any variable, performing any operation on the variable throws a
NullPointerException.

String s=null;

System.out.printin(s.length()); //NullPointerException

25

BIA scenario where NumberFormatException occurs

The wrong formatting of any value may occur

NumberFormatException. Suppose | have a string variable that has characters, converting this
variable into digit will occur NumberFormatException. String s="abc"; int
i=Integer.parselnt(s);//NumberFormatException

A scenario where ArraylndexOutOfBoundsException occurs

® If you are inserting any value in the wrong index, it would result in
ArraylndexOutOfBoundsException as shown below: int a[]=new int[5];

a[10]=50; //ArraylndexOutOfBoundsException

26

TRY & CATCH

The try statement allows you to define a block of code to be

tested for errors while it is being executed.

The catch statement allows you to define a block of code to be

executed, if an error occurs in the try block.

The try and catch keywords come in pairs

try {
// Block of code to try

iy
Syntax catch{Exception e} {

// Block of code to handle errors

Consider the following example

public class MyClass 1
public static void main(String[] args) {
int[] myNumbers = {1, 2, 3};

System.out.printin{myNumbers{10]); // error!

This will generate an error, because myNumbers[10] does not exist.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

at MyClass.main(MyClass.java:4)

If an error occurs, we can use try...catch to catch the error and

execute some code to handle it

public class MyClass {

try {

} catch (Exception e)

public static void mein(String[] args) 1

int[] myNumbers = {1, 2, 3};
System.out.println({myMNumbers[16]);

System.out.println("Something went wrong.");

r

Output

Something went wrong.

29

Internal working of java try-catch block

anobject of exception
classis thrown
int data=10/0;

b

no

"'.'-Vexceptionubj_e_ct

is yes

VM

SN /" restofthecodeis

{ 1)prints out exception description \
: 2)printsthe stack trace
B 3)terminatesthe program

{ executed)
\ &

BThe JVM firstly checks whether the exception is handled or not. If exception is not handled,
JVM provides a default exception handler that performs the following tasks:

® Prints out exception description.
® Prints the stack trace (Hierarchy of methods where the exception occurred).

® Causes the program to terminate.

BBut if exception is handled by the application programmer, normal flow of the application is
maintained i.e. rest of the code is executed.

Multi-catch block

BIA try block can be followed by one or more catch blocks. Each catch block must contain a
different exception handler. So, if you have to perform different tasks at the occurrence of
different exceptions, use java multi-catch block.

BIAt a time only one exception occurs and at a time only one catch block is executed.

RIAIl catch blocks must be ordered from most specific to most general, i.e. catch for
ArithmeticException must come before catch for Exception.

public class MultipleCatchBlockl {
public static void main(String[] args) {

try{
int a[]=new int[5];
a[5]=30/0;
¥
catch(ArithmeticException e)
1
System.out.printin("Arithmetic Exception occurs");
¥
catch(ArrayIndexOutOfBoundsException e)
i
System.out.printin("ArrayIndexOutOfBounds Exception occurs");
bs
catch(Exception e)
i
System.out.printin("Parent Exception occurs");

¥

System.out.printin("rest of the code");

Output

Arithmetic Exception occurs

rest of the code

Nested try block

The try block within a try block is known as
nested try block in java.
Sometimes a situation may arise where a part
of a block may cause one error and the entire
block itself may cause another error. In such cases,

exception handlers have to be nested.

try

statement 1;
statement 2;
try
{
statement 1;
statement 2;
3y
catch{Exception e}
1
¥
¥
catch(Exception e)
{
¥

finili;g block:is always ‘executed
rest of the code...

38

Case2- Let's see the java finally example where exception occurs

and not handled. class TestFinallyBlock1{
public static void main(String args[]){
try{
int data=25/0;
System.out.printin(data);
¥
catch(NullPointerException e){System.out.printin{e);}
finally{System.out.println("finally block is always executed"}; }
System.out.printin{"rest of the code...");
¥
¥

Qutput:finally block is always executed

Exception in thread main java.lang.ArithmeticException:/ by zero

39

Case 3 - Let's see the java finally example where exception occurs

and handled public class TestFinallyBlock2{
public static void main(String args[]){
try{
int data=25/0;
System.out.printin{data);
¥
catch(ArithmeticException e}{System.out.printin{e);}
finally{System.out.printIn("finally block is always executed");}
System.out.printin("rest of the code..."});
¥
b

Output:Exception in thread main java.lang.ArithmeticException:/ by zero
finally block is always executed

rest of the code...

40

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by

throw keywo rd public class TestThrow1{

static void validate(int age){
if(age<18)
throw new ArithmeticException("not valid");
else

OUtPUt System.out.printin({"welcome to vote");

¥

public static void main(String argsi])}{
validate(12);

System.out.printin("rest of the code...");

BThe Java throws keyword is used to declare an exception.

] It gives an information to the programmer that there may occur an exception so it is better for
the programmer to provide the exception handling code so that normal flow can be maintained

BIException Handling is mainly used to handle the checked exceptions.

] If there occurs any unchecked exception such as NullPointerException, it is programmers fault
that he is not performing check up before the code being used.

Syntax of java throws

return_type method_name() throws exception_class_nameq{

//method code
7

Which exception should be declared

¢ checked exception only, because:

¢ unchecked Exception: under your control so correct your code.

e error: beyond your control e.g. you are unable to do anything if

there occurs VirtualMachineError or StackOverflowError.

43

Eg:

import java.io.®;
class ThrovExample {
void myMethod{int num)throws IOException, ClassNotFoundException{
if(num==1)
throw new IOException("IOException Occurred");
else

throw new ClassNotFoundException("ClassNotFoundException™);

public class Examplelif
public static void main(String args[]){
try{
ThrowExample obj=new ThrowExample();
obj.myMethod(1);
tcatch(Exception ex){
System.out.println(ex);

¥

Output

Output:

java.io.I0Exception: IOException Occurred

44

® Java I/O (Input and Output) is used to process the input and produce the output.

® Java uses the concept of a stream to make I/O operation fast. The java.io package contains all the
classes required for input and output operations.

® We can perform file handling in Java by Java I/O API.
STREAM

® A stream is a sequence of data. In Java, a stream is composed of bytes. It's called a stream because it
is like a stream of water that continues to flow.

Bln Java, 3 streams are created for us automatically. All these streams are attached with the console.

1) System.out : standard output stream

2) System.in :standard input stream

3) System.err : standard error stream

BIThe code to print output and an error message to the console.

System.out.printIn("simple message");
System.err.printIn("error message"); BThe code to get input
from console.

int i=System.in.read(); //returns ASCII code of 1st character

OutputStreamvs InputStream

OutputStream

Java application uses an output stream to write data

destination; it may be a file, an array, peripheral device or socket.
InputStream

Java application uses an input stream to read data from a source; it

may be a file, an array, peripheral device or socket.

to

The working of Java OutputStream and InputStream

AN
B

File Console Socket

0 -
- 1010101010

File Console Socket

InputStream OutputStream
, Java

— 1010101010 — Destination

Source — 1010101010 — T
Application
Read Write

OutputStream class

some sink.

e OutputStream class is an abstract class

e [tis the superclass of all classes representing an output stream of

bytes. An output stream accepts output bytes and sends them to

Useful methods of OutputStream

Method

1) public void write(int)throws I0Exception

Description

is used to write a byte to the current output stream.

2) public void write(byte[])throws IOException

is used to write an array of byte to the current output stream.

3) public void flush()throws IOException

flushes the current output stream.

4) public void close()throws IOException

is used to close the current output stream.

OutputStream Hierarchy

OutputStream
A
(: FileOutputStream) | ByteAnayOutputStream) (FilterOutputStream | | VPipedOutputStream) ObjectOutputStream :
e e —— == S —
' DataOutputStream | (VBuﬁeredOutputStream) PrintStream
7

InputStream class
InputStream class is an abstract class.

Itis the superclass of all classes representing an input stream of

bytes.
Useful methods of InputStream
Method Description
1) public abstract int read()throws reads the next byte of data from the input stream. It returns -1 at the end of the
IOException file.

2) public int available()throws IOException | returns an estimate of the number of bytes that can be read from the current input

stream.

3) public void close()throws I0Exception is used to close the current input stream.

InputStream Hierarchy

InputStream

T

b -

) \’A PipedinputStream) ObjectinputStream

) By'leArraylnputStream') (
S SN

FilterlnputStream

~ — . —

g —~ -

FilelnputStream)

| |

L) BufferedlnputStream-} (/PushBacklnputStrean;“)

C DatalnputStream

— s —— —— =

READING CONSOLE INPUT

Blin Java, there are three different ways for reading input from the user in the command line

environment(console).
1.Using Buffered Reader Class

® This is the Java classical method to take input, Introduced in JDK1.0.

® This method is used by wrapping the System.in (standard input stream) in an InputStreamReader
which is wrapped in a BufferedReader, we can read input from the user in the command line.

® Advantage - The input is buffered for efficient reading ¢ Drawback - The wrapping code is hard to

remember.
10

// Java program to demonstrate BufferedReader

import java.io.BufferedReader;

import java.io.lOException;

import java.io.InputStreamReader;

public class Test

{
public static void main(String[] args) throws IOException
{

//Enter data using BufferReader

BufferedReader reader = new BufferedReader(new
InputStreamReader(System.in));

// Reading data using readLine
String name = reader.readLine();
// Printing the read line
System.out.printin(name);

2. Using Scanner Class

® This is probably the most preferred method to take input.

® The main purpose of the Scanner class is to parse primitive types and strings using regular
expressions, however it is also can be used to read input from the user in the command line.

Advantages:Convenient methods for parsing primitives (nextInt(), nextFloat(), ...) from the tokenizeq

input.
® Regular expressions can be used to find tokens. Drawback:

® The reading methods are not synchronized

// Java program to demonstrate working of Scanner in Java
import java.util.Scanner;
class GetlnputFromUser Input:

{

public static void main(String args[]) H2eIIoStudents
1

{

3.4

// Using Scanner for Getting Input from User
Output:

Scanner in = new Scanner(System.in);
String s = in.nextLine();

System.out.printIn("You entered string "+s); HelloStudents

Inta = m.nextlr\t();) You entered integer 12

System.out.printin("You entered integer "+a); You entered float 3.4

float b = in.nextFloat();

System.out.printIn("You entered float "+b);

You entered string

13

3. Using Console Class
Elt has been becoming a preferred way for reading user’s input from the command line.

Blin addition, it can be used for reading password-like input without echoing the characters entere
by the user; the format string syntax can also be used (like System.out.printf()).

Advantages:
BIReading password without echoing the entered characters.

FReading methods are synchronized.
REFormat string syntax can be used.

Drawback: Does not work in non-interactive environment (such as in an IDE).

14

// Java program to demonstrate working of System.console()
// Note that this program does not work on IDEs as

// System.console() may require console

public class Sample

{

public static void main(String[] args)

{

// Using Console to input data from user
String name = System.console().readLine();

System.out.printin(name);

WRITING CONSOLE OUTPUT

o Console output is most easily accomplished with print() and printin() methods.

o These methods are defined by the class PrintStream which is the type of object referenced by
System.in.

O Because the PrintStream is an output stream derived from the OutputStream, it also
implements the low-level method write().

O Thus, write() can be used to write to the console. The simplest form of write() defined by th
PrintStream is shown below :

[¢]

void write(int byteval)

16

e Following is a short example that uses write() to output the

character 'X' followed by a newline to the screen:

/* Java Program Example - Java Write Console Output
* This program writes the character X followed by newline
% This program demonstrates System.out.write() */
class WriteConsoleOutput
{

public static void main(String args[])
{
int y;
yi= XY
System.out.write(y);
System.out.write('\n');
3
}

17

e Java PrintWriter class is the implementation of Writer class.

e It is used to print the formatted representation of objects to the

text-output stream.
Class declaration
public class PrintWriter extends Writer

Methods of PrintWriter class

Method Description
void printin{boolean x) It is used to print the boolean value.
void printin{char[] x) It is used to print an array of characters.

void printin(int x) It is used to print an integer.

18

PrintWriter append(char c)

It is used to append the specified character to the writer.

PrintWriter append(CharSequence ch)

PrintWriter append(CharSequence ch, int
start, int end)

It is used to append the specified character sequence to the writer.

It is used to append a subsequence of specified character to the writer.

boolean checkError()

It is used to flushes the stream and check its error state.

protected void setError()

It is used to indicate that an error occurs.

protected void clearError()

It is used to clear the error state of a stream.

PrintWriter format(String format, Object...

args)

void print{Object obj)

It is used to write a formatted string to the writer using specified arguments

and format string.

It is used to print an object.

void flush()

void close()

It is used to flushes the stream.

It is used to close the stream.

19

import java.io.File;
import java.io.PrintWriter;

public class PrintWriterExample {

writer.flush();
writer.close();
//Data to write in File using PrintWriter

PrintWriter writerl =null;

writerl.flush();

writerl.close();

public static void main(String[] args) throws Exception {
//Data to write on Console using PrintWriter
PrintWriter writer = new PrintWriter(System.out);

writer.write("Javatpoint provides tutorials of all technology.");

writerl = new PrintWriter(new File("D:\\testout.txt"));

writer1.write("Like Java, Spring, Hibernate, Android, PHP etc.");

Qutpt

Javatpoint provides tutorials of all technology.

20

® Serialization in Java is the process of converting the Java code Object into a Byte Stream, to transfer
the Object Code from one Java Virtual machine to another and recreate it using the process of
Deserialization.

® Most impressive is that the entire process is JVM independent, meaning an object can be serialized
on one platform and deserialized on an entirely different platform.

® For serializing the object, we call the writeObject() method of ObjectOutputStream, and for
deserialization we call the readObject() method of ObjectinputStream class.

21

e We must have to implement the Serializable interface for

serializing the object.
Advantages of Java Serialization

e It is mainly used to travel object's state on the network (which is

known as marshaling). Serialization

N
| ——

Deserialization

22

ObjectOutputStream class

B The ObjectOutputStream class is used to write primitive data

types, and Java objects to an OutputStream.

Only objects that support the java.io.Serializable interface can be

written to streams.

Constructor
1) public ObjectOutputStream(OutputStream out) throws creates an ObjectOutputStream that writes to the specified
I0Exception {} OutputStream.
Important Methods
Method Description
‘ 1) public final void writeObject(Object obj) throws IO0Exception {} ‘ writes the specified object to the ObjectOutputStream. ‘
‘ 2) public void flush() throws IOException {} flushes the current output stream.
‘ 3) public void close() throws IOException {} closes the current output stream. ‘

23

ObjectinputStream class
e An ObjectinputStream deserializes objects and primitive data

written using an ObjectOutputStream.

Constructor
‘ 1) public ObjectInputStream(InputStream in) throws creates an ObjectInputStream that reads from the specified
i IOException {} InputStream.
Important Methods
Method Description
‘ 1) public final Object readObject() throws I0Exception, ClassNotFoundException{} | reads an object from the input stream.
i 2) public void close() throws IOException {3} | closes ObjectInputStream.

24

Example of Java Serialization import java.io.™;
class Persist{

* Inthis example, we are going to public static void main(String args[1)}{

serialize the object of Student ey {
//Creating the object
class. The WriteObjeCt() method Student s1 =new Student(211,"ravi");

o ObjectOutputStream class //Creating stream and writing the object

FileOQutputStream fout=new FileOutputStream("f.txt");

provides the functionality to ObjectOutputStream out=new ObjectOutputStream(fout);
QI q o t.writeObject(s1);
serialize the object. We are saving gutwilteObiecti1)
out.flush();
the state of the object in the file //closing the stream
out.close();
named f.txt. 0
System.out.printin("success");
Output success Jcatch(Exception e){System.out.printin(e);}
¥
b

25

e File handling is an important part of any application.

e Java has several methods for creating, reading, updating, and

deleting files.
e The File class from the java.io package, allows us to work with files.

e To use the File class, create an object of the class, and specify the

filename or directory name:

Example

import java.io.File; // Import the File class

File myObj = new File("filename.txt"); // Specify the filename

26

e The File class has many useful methods for creating and getting

information about files. For example:

Method

canRead()
canlirite()
createlewFile()
delete()

exists()
getName()
getAbsolutePath()
length()

list()

mkdir()

Type
Boolean
Boolean
Boolean
Boolean
Boolean
String
String
Long
String[]

Boolean

Description

Tests whether the file is readable or not
Tests whether the file is writable or not
Creates an empty file

Deletes a file

Tests whether the file exists

Returns the name of the file

Returns the absolute pathname of the file
Returns the size of the file in bytes

Returns an array of the files in the directory

Creates a directory

27

BICreate a File

BTo create a file in Java, you can use the createNewFile() method.

EThis method returns a boolean value: true if the file was successfully created, and false if the file

already exists.

EINote that the method is enclosed in a try...catch block.

This is necessary because it throws an I0Exception if an error occurs (if the file cannot be created

for some reason):

28

Example

import java.io.File; // Import the File class

public class CreateFile {

public static void main(String[] args) {
try {
File myObj = new File(“filename.txt");
if (myObj.createlewFile()) {
System.out.println("File created:

“

+ myObj.getMame());
T else {

System.out.println("File already exists.");
}
} catch (IOException e) {
System.out.println(“An error occurred.");

import java.io.IOException; // Import the IOException class to handle errors

-

—

e.printStackTrace(); The output will be:

. File created: filename.txt

29

Write To a File

In the following example, we use the FileWriter class
its write() method to write some text to the file we created in the

example above.

Note that when we are done writing to the file, we should close it

with the close() method:

together with

Example

import java.io.Filelriter; // Import the Filelriter class
import java.io.IOException; // Import the IOException class to handle errors

public class WriteToFile {

public static void main(String[] args) {

try {
FileWriter myWriter = new FilelWriter("filename.txt");
myllriter.write("Files in Java might be tricky, but it is fun enough!™);
myliriter.close();
System.out.println("Successfully wrote to the file.");

} catch (IOException e) {
System.out.println("An error occurred.");

e.printStackTrace();

The output will be:

Successfully wrote to the file.

[
—

(-]

31

Read Files

import java.io.File; // Import the File class
import java.io.FileNotFoundException; // Import this class to handle errors

import java.util.Scanner; // Import the Scanner class to read text files
public class ReadFile {
public static void main(String[] args) {
try {
File myObj = new File("filename.txt");
Scanner myReader = new Scanner(myObj);
while (myReader.hasNextlLine()) {
String data = myReader.nextline();
System.out.println(data);
¥
myReader.close();
- catch (FileMotFoundException e) {

—

System.out.println("An error occurred.");

e.printStackTrace(); The output will be:

—

e

Files in Java might be tricky, but it is fun enou

Get File Information

import java.io.File; // Import the File class

public class GetFileInfo {
public static void main(String[] args) {
File myObj = new File(“filename.txt");
if (myObj.exists()) {
System.out.println(“File name: " + myObj.getName());
System.out.println(“Absolute path: " + myObj.getAbsolutePath());
System.out.println("Writeable: " + myObj.canWrite());
System.out.println{“Readable " + myObj.canRead());
System.out.println(“File size in bytes " + myObj.length());

else { The output will be:

[

System.out.println{"The file does not exist.");
File name: filename.txt

Absolute path: C:\Users\MyName\filename.txt
J Writeable: true

Readable: true

—

File size in bytes: 0

Delete a File

To delete afile in Java, use the delete() method:

import java.io.File; // Import the File class

public class DeleteFile {
public static void main(String[] args) {
File myObj = new File("filename.txt");
if (myObj.delete()) {
System.out.println(“Deleted the file: " + myObj.getName());
T else {
System.out.println(“Failed to delete the file.");

The output will be:

Deleted the file: filename.txt

Delete a Folder

import java.io.File;

public class DeleteFolder {
public static void main(String[] args) {
File myObj = new File("C:\\Users\\Mylame\\Test");
if (myObj.delete()) {
System.out.println("Deleted the folder: " + myObj.getName());
I else {
System.out.println(“Failed to delete the folder.");

1
J

o The output will be:

Deleted the folder: Test

MODULE 4
ADVANCED FEATURES OF JAVA

CHAPTER 1
Java Library & Collections framework

® In Java, string is basically an object that represents sequence of char values. An array of
characters works same as Java string. For example:
char[] ch={'h','a",’i",j',’a','v',’a'};
String s=new String(ch); is same as:
String s = “haijava";

® Java String class provides a lot of methods to perform operations on strings such as compare(),

concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.
2

B Create a string object

BIThere are two ways to create String object:

* By string literal

~ * By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:
String s = "welcome";
* Each time you create a string literal, the JVM checks the "string
constant pool" first.
» If the string already exists in the pool, a reference to the pooled
instance is returned.
* If the string doesn't exist in the pool, a new string instance is created
and placed in the pool. For example:

String s1="Welcome";
String s2="Welcome"; //It doesn't create a new instance

® Inthe above example, only one object will be created.

O Firstly, JVM will not find any string object with the value
"Welcome" in string constant pool, that is why it will create a new object.

® After that it will find the string with the value "Welcome" in the pool, it will not create a new
object but will return the reference to the same instance.

O Note: String objects are stored in a special memory area known as the "string constant pool".

Why Java uses the concept of String literal

To make Java more memory efficient (because no new objects are

created if it exists already in the string constant pool).

“Welcome” | |

51 | //

/ /

s‘w /

= g
= S

Heap

2) By new keyword

String s=new String("Welcome"); //creates two objects and one

reference variable

¢ In such case, JVM will create a new string object in normal (non-
pool) heap memory, and the literal "Welcome" will be placed in the
string constant pool.

e The variable s will refer to the object in a heap (non-pool).

String Example

public class StringExample{

public static void main(String args[1){

String si="java";//creating string by java string literal

char ch[]={"s",'t','r","I",'n","g",'s"'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating java string by new keyword
System.out.printin(s1);

System.out.printin(s2);

System.out.printin(s3);

33

OUTPUT

java
strings

example

STRING CONSTRUCTORS

* The string class supports several types of constructors in Java APIs. The most commonly used
constructors of String class are as follows:

1. String() : To create an empty String, we will call a default constructor. For example:

String s = new String();

¢ It will create a string object in the heap area with no value

| |2, String(String str) : It will create a string object in the heap area and stores the given value in it.
For example:

String s2 = new String(“Hello Java“); Now, the object
contains Hello Java.

3. String(char chars|]) : It will create a string object and stores the array of characters in it. For
example: char chars[]={‘a’, ‘b’, ‘’c’, ‘d" };
String s3 = new String(chars);

The object reference variable s3 contains the address of the value stored in the heap area.

Let’s take an example program where we will create a string object

and store an array of characters in it

package stringPrograms;

public class Science

{

public static void main(String[] args)

{

char chars[] = { 's', 'c¢', 'i', 'e', 'n', 'c', 'e' };

String s = new String(chars);
System.out.println(s);

¥

),

Output:

science

10

4, String(char chars|], int startindex, int count)
® It will create and initializes a string object with a subrange of a character array.

® The argument startindex specifies the index at which the subrange begins and count specifies the
number of characters to be copied.

For example:

LA ¢ Y

char chars[] ={ ‘W, ', ‘n’, ‘d’, ‘0’, ‘W’, ’s" }; String str = new
String(chars, 2, 3);

® The object str contains the address of the value "ndo” stored in the heap area because the
starting index is 2 and the total number of characters to be copied is 3

11

EXAMPLE

package stringPrograms;

public class Windows

{

public static void main(String[] args)

{

char: chars[] =+ "w’; "% "n'; “dY% Sof,; "wip st ¥

String s = new String(chars, 0,4);

System.out.println(s);

¥

b
Output:

wind
12
e In this example program, we will construct a String object that

contains the same characters sequence as another string object.

package stringPrograms;
public class MakeString
{
public static void main(String[] args)
{
char chars[] = { 'F', "A", 'N' };

String s1 = new String(chars);
String s2 = new String(sl);
System.out.println(sl);
System.out.println(s2);
¥

}

QOutput:
FAN
FAN

As you can see the output, s1 and
s2 contain the same string.
Thus, we can create one string

from another string.

13

5.

String(byte byteArr[])

decoding the given array of bytes (i.e, by decoding ASCII values into

the characters) according to the system’s default character set.

It constructs a new string object by

package stringPrograms;
public class ByteArray
{
public static void main(String[] args)

{

byte b[] = { 97, 98, 99, 160 }; // Range of bytes: -128 to 127.

values will be converted into corresponding characters.
String s = new String(b);

System.out.println(s);

}
¥

Output:
abcd

These byte

14

6. String(byte byteArr[], int startindex, int count)

This constructor also creates a new string object by decoding the

ASClI values using the system’s default character set.

package stringPrograms;

public class ByteArray

String s = new String(b, 2, 4); // CDEF
System.out.println(s);

3

}

Output:
CDEF

{

public static void main(String[] args)

{

byte b[] = { 65, 66, 67, 68, 69, 78 }; // Range of bytes: -128 to 127.

STRING LENGTH

e The java string length() method gives length of the string. It returns

count of total number of characters.
e Internal implementation
publicint length() {

return value.length;

Signature - The signature of the string length() method is given

below:

publicint length()

String length() method example - 1

public class LengthExample{

public static void main(String args[1){

String s1="javatpoint";

String s2="python";

System.out.printin("string length is: "+sl.length());//10 is the length of javatpoint string
System.out.printin("string length is: "+s2.length());//6 is the length of python string

33

Output

string length is: 1@
string length is: §

String length() method example - 2

public class LengthExample2 {
public static void main(String[] args) {
String str = "Javatpoint";
if(str.length()>0) {
System.out.printin("String is not empty and length is: "+str.length(});
¥
stre=""
if(str.length()==0) {
System.out.printIn("String is empty now: "+str.length());

String is not empty and length is: 10
Output g P 8

String is empty now: @

18

STRING COMPARISON

® We can compare string in java on the basis of content and reference

® There are three ways to compare string in java:

By equals() method
By = = operator
By compareTo() method
BIString compare by equals() method

® The String equals() method compares the original content of the string.

® |t compares values of string for equality. String class provides two methods

19

public boolean equals(Object another)

specified object.

public boolean equalslgnoreCase(String

String to another string, ignoring case

class Teststringcomparison1{

public static void main(String args{]}{
String s1="Sachin";
String s2="Sachin";
String s3=new String("Sachin");
String s4="Saurav";
System.out.printin(sl.equals(s2));//true
System.out.printin(sl.equals(s3));//true
System.out.printin(sl.equals(s4));//false

compares this string to the

another)

Cutput:true
true

Talse

compares

this

20

Example 2

class Teststringcomparison2{

public static void main(String args[]){
String s1="Sachin";
String s2="SACHIN";

System.out.printin(sl.equals(s2));//false
System.out.println(sl.equalsIgnoreCase(s2));//true
¥
3

21

String compare by == operator
eThe = = operator compares referencesnot values.

class Teststringcomparison3{

public static void main(String args[]){
String s1="Sachin";
String s2="Sachin";
String s3=new String("'Sachin");
System.out.printin(s1==s2};//true (because both refer to same instance)

System.out.printin(s1==s3);//false(because s3 refers to instance created in nonpool)

Output:true

false

22

[String compare by compareTo() method
¢ The String compareTo() method compares values lexicographically and returns an integer value that
describes if first string is less than, equal to or greater than second string.

Suppose sl and s2 are two string variables. If:

sl==s52:0s1>s2 :positive
value sl < s2: negative value

class Teststringcomparison4{

public static void main(String args[]}{

String s1="Sachin";

String s2="Sachin";

String s3="Ratan";
System.out.printin{s1l.compareTo(s2));//0

Output: @
1
e §

System.out.printin{sl.compareTo(s3));//1(because s1:>s3)
System.out.println(s3.compareTo(s1));//-1(because s3 < s1)

24

Eg:

public class CompareToExample{
public static void main{String args[]){
String s1="hello";

String s2="hello";

String s3="meklo";

String s4="hemlo";

String s5="flag";

System.out.printin(s1l.compareTo(s2));//0 because both are equal

System.out.printin(si.compareTo(s4));//-1 because "I" is 1 times lower than "m"
System.out.printin(si.compareTo(s5));//2 because "h" is 2 times greater than "f"

¥

System.out.printin(sl.compareTo(s3));//-5 because "h" is 5 times lower than "m"

25

SEARCHING STRINGS B
String contains()

® The java string contains() method searches the sequence of characters in this string.

® It returns true if sequence of char values are found in this string otherwise returns false.
Internal implementation public boolean
contains(CharSequence s) { return
indexOf(s.toString()) > -1;

}

26

Signature

¢ The signature of string contains() method is given below: -

public boolean contains(CharSequence sequence)

class ContainsExample{ Output
public static void main(String args[]){ trus
String name="what do you know about me";

true
System.out.printin(name.contains("do you know"));
System.out.printin(hame.contains("about")); false

System.out.printin(name.contains("hello"});

33

27

Eg2- The contains() method searches case sensitive char sequence.
If the argument is not case sensitive, it returns false. Let's see an

example below.

public class ContainsExample2 {

public static void main(String[] args) { Output
String str = "Hello Javatpoint readers”; =
. : _ _ trus
boolean isContains = str.contains("Javatpoint");
System.out.printin{isContains); ::a l sa
/{ Case Sensitive

System.out.printin{str.contains("javatpoint")); // false

28

Eg3- The contains() method is helpful to find a char-sequence in the
string. We can use it in control structure to produce search based

result. Let us see an example below.

public class ContainsExample3 {

public static void main(String[] args) {
Output:

String str = "To learn Java visit Javatpoint.com";

if(str.contains("Javatpoint.com")) { This string contains javatpoint.com

System.out.printIn("This string contains javatpoint.com");
Jelse

System.out.printIn("Result not found");

29

CHARACTER EXTRACTION
String charAt()

® The java string charAt() method returns a char value at the given index number.
® The index number starts from 0 and goes to n-1, where n is length of the string.

® It returns StringlndexOutOfBoundsException if given index number is greater than or equal to this
string length or a negative number.

® Signature - The signature of string charAt() method is given below:

public char charAt(int index)

30

Example:

public class CharAtExample{

public static void main(String args[]){

String name="javatpoint";

char ch=name.charAt(4);//returns the char value at the 4th index

System.out.printin(ch);
I

Output

31

StringIndexOutOfBoundsException with charAt()

e Let's see the example of charAt() method where we are passing

greater index value.

e Insuch case, it throws StringlndexOutOfBoundsException at run

time.

public class CharAtExample{

public static void main{String args[]){

String name="javatpoint";

char ch=name.charAt(10);//returns the char value at the 10th index
System.out.printin(ch);

33

32

Output:

Exception in thread "main" java.lang.StringIndexOutOfBoundsException:
String index out of range: 1@

at java.lang.String.charAt(String.java:658)

at CharAtExample.main(CharAtExample.java:4)

Java String charAt() Example 3

o Let's see a simple example where we are accessing first and last

character from the provided string.

public class CharAtExample3 {
public static void main(String[] args) {
String str = "Welcome to Javatpoint portal”;
int strLength = str.length();
// Fetching first character
System.out.printin("Character at 0 index is: "+ str.charAt(0));
// The last Character is present at the string length-1 index
System.out.printin("Character at last index is: "+ str.charAt(strLength-1))
¥

r

Output:

Character at @ index is: U

Character at last index is: 1

34

Java String charAt() Example 4

e Let's see an example where we are accessing all the elements

-+

present at odd index. Output:
public class CharAtExample4 { Bhanedidd placece
public static void main(String[] args) { Char at 3 place ¢
- . Char at 5 place m
String str = "Welcome to Javatpoint portal";
Char &t 7 place
for (int i=0; i<=strlength()-1; i++) { Char at 9 place o
if(i°/02!=0) { Char at 11 place
Char at 13 place
System.out.printin("Char at "+i+" place "+str.charAt(i)); Char at 15 place
} Char at 17 place
Char at 19 place
} Char at 21 place
} Char at: 23 place
} Char at 25 place
Char at 27 place

[

35

Java String charAt() Example 5

e Let's see an example where we are counting frequency of a

character in the string.

public class CharAtExample5 {
public static void main(String[] args) {

String str = "Welcome to Javatpoint portal"; OUtpUt:
int count = 0;

for (int i=0; i<=strlength()-1; i++) {

if(str.charAt(i) == 't') { Frequency of t is: 4
count++;
3
¥
System:.out.printin{"Frequency of t is: "+count);
¥

36

® The java string replace() method returns a string replacing all the old char or CharSequence to
new char or CharSequence. Signature

® There are two type of replace methods in java string.

public String replace(char oldChar, char newChar) and

public String replace(CharSequence target, CharSequence replacement) e The
second replace method is added since JDK 1.5.

37

String replace(char old, char new) method example

public class ReplaceExamplel{
public static void main(String args[]){
String s1="java is a very good language";

// replaces all occurrences of 'a'to'e’
String replaceString=s1.replace('a','e");
System.out.printIn(replaceString);

i

Output

jeve is e very good lenguege

38

String replace(CharSequence target, CharSequence
replacement) method example

public class ReplaceExample2{
public static void main(String args[1){

String s1="my name is khan my name is java";

niair u "in

System.out.printin(replaceString);

13

String replaceString=s1.replace("is","was");//replaces all occurrences of "is" to "was"

Output

my name was khan my name was java

39

String replace() Method Example 3

public class ReplaceExample3 {

public static void main{String[] args) {
String str = "ooooo0-hhhh-o000000";
String rs = str.replace("h","s"); // Repiace 'h' with 's'
System.out.printin(rs);
rs = rs.replace("s","h"}; // Replace 's' with 'h’

System.out.printin(rs);

000000 -5SE5-000000

| Output

ocooooo-nhhh-cooooo

40

® The java string replaceAll() method returns a string replacing all the sequence of characters
matching regex and replacement string.

Internal implementation public String replaceAll(String regex, String replacement) {

return Pattern.compile(regex).matcher(this).replaceAll(replacement);

}

Signature public String replaceAll(String regex, String replacement)

4

String replaceAll() example: replace character
e Let's see an example to replace all the occurrences of a single character.

public class ReplaceAllExamplel{ public static void
main(String args[]){

String s1="java is a very good language";

nan n.n

String replaceString=s1.replaceAll("a","e");//replaces all occurrences of "a" to "e

System.out.printIn(replaceString);

1}

Output jeve is e very good lenguege
42

String replaceAll() example: replace word

e Let's see an example to replace all the occurrences of single word

or set of words.

public class ReplaceAllExample2{
public static void main(String args[])<{
String s1="My name is Khan. My name is Bob. My name is Sonoo.";

String replaceString=s1.replaceAll("is",

was");//replaces all occurrences of "is" to "was"

System.out.printin(replaceString);

13

Output

My name was Khan. My name was Bob. My name was Sonoo.

43

String replaceAll() example: remove white spaces

e Let's see an example to remove all the occurrences of white spaces.

public class ReplaceAllExample3{

public static void main(String args[])1{

String s1="My name is Khan. My name is Bob. My name is Sonoco.";
String replaceString=sl.replaceAll("\\s","");
System.out.printin(replaceString);

b

Output

MynameisKhan.MynameisBob.MynameisSonoo.

44

STRING VALUE OF ()

® The java string valueOf() method converts different types of values into string.

® By the help of string valueOf() method, we can convert int to string, long to string, boolean to
string, character to string, float to string, double to string, object to string and char array to
string.
Internal implementation public static String valueOf(Object obj) {
return (obj == null) ? "null" : obj.toString();

}

45

Signature

e The signature or syntax of string valueOf() method is given below:

public static
public static
public static
public static
public static
public static
public static

public static

String valueOf(
String valueOf(
String valueOf{(
String valueOf(
String valueOf{(
String valueOf(
String valueOf(

String valueOf(

boolean b)
char «¢)

char [] c)
int i)

long |

float f)
double d)

Object o)

46

valueOf() method example

ks

int value=30;

public class StringValueOfExample{
public static void main{String args[]){

String s1=String.valueOf(value);
System.out.printin(s1+10);//concatenating string with 10

Output

3010

47

valueOf(boolean bol) Method Example

This is a boolean version of overloaded valueOf() method. It takes

boolean value and returns a string. Let's see an example.

public class StringValueOfExample2 {
public static void main(String[] args) {

// Boolezan to String
boolean bol = true;
boolean bol2 = false;
String s1 = String.valueOf(bol);
String s2 = String.valueOf(bol2);
System.out.printin(s1};
System.out.printin(s2)};

Output

true
false

48

valueOf(char ch) Method Example

This is a char version of overloaded valueOf() method. It takes

char value and returns a string. Let's see an example.

public class StringValueOfExample3 {
public static void main{String[] args) {

/{ char to String
char chl = 'A";
char ch2 = 'B';
String s1 = String.valueOf(ch1);
String s2 = String.valueOf(ch2);
System.out.printin(sl);
System.out.printin(s2);

Output
A
B

49

valueOf(float f) and valueOf(double d) Example

This is a float version of overloaded valueOf() method. It takes

float value and returns a string. Let's see an example.

public class StringValueOfExample4 {
public static void main{String[] args) {
// Float and Double to String
float f = 10.05f; Output
double d = 10.02; 10.05
String s1 = String.valueOf(f);
: : 10.02
String s2 = String.valueOf(d);
System.out.printin(s1);

System.out.printin(s2);

50

2l String valueOf() Complete Examnples

public class StringValueOfExample5 { System out println(sl) ;
. . ’

public static void main(String[] args) {

boolean bi=true; System.out.print|n(52);
byte b2=11; ;
[e is System.out.printin(s3); Output
e y true
inti=13; System.out.printin(s4);
long | = 14L; s 1
Hoat Fa 155t System.out.printin(sS); | |12
double £ =100 System.out.printin(s6); = |**
char chr[1={"j','a",'v','a'}; - 14
StringValueOfExample5 obj=new StringValueOfExample5(); System.out. Pll ntln(s?); 15.5
String s1 = String.valueOf(b1); A
s oot v System.out.printin(s8); | [16-5
String s2 = String.valueOf(b2); £
4] . java
String §3 = String.valueof(sh); System.out.printin(sg); DR s oo s
String s4 = String.valueOf(i); DEDE S8 HE ot Soen o2

String s5 = String.valueOf(l); }

String s6 = String.valueOf(f); }

String s7 = String.valueOf(d);
String s8 = String.valueOf(chr);

String s9 = String.valueOf(obj);

51

Immutable String in Java
e In java, string objects are immutable . Immutable simply means
unmodifiable or unchangeable . Once string object is created its

data or state can't be changed but a new string object is created.

Example

class Testimmutablestring{
public static void main(String args[]1){
String s="Sachin";
s.concat(" Tendulkar");//concat() method appends the string at the end

System.out.printIn(s);//will print Sachin because strings are immutable objects

I
b

Output Sachin

It can be understood by the diagram given below. Here Sachin is not

changed but a new object is created with sachintendulkar. That is

why string is known as immutable.

/. = -
/J
"" ‘ Sachin”
|
‘““Sachin Tendulkar”

String constant pool

Heap

53

® As you can see in the figure that two objects are created but s reference variable still refers to
"Sachin" not to "Sachin Tendulkar".

® But if we explicitely assign it to the reference variable, it will refer to "Sachin Tendulkar" object.
For example:

class Testimmutablestringl{
Output

public static void main(String args[]){ Sachin Tendulkar

String s="Sachin"; In such case, s points to the
s=s.concat(" Tendulkar"); "Sachin Tendulkar". Please notice that still

SysteniGUEprintings): sachin object is not modified.

} 54
b:

BIWhy string objects are immutable in java ® Because java uses the

concept of string literal.

® Suppose there are 5 reference variables,all referes to one object "sachin".

® If one reference variable changes the value of the object, it will be affected to all the reference
variables.

® That is why string objects are immutable in java.

55

String and StringBuffer

No. String StringBuffer
1) String class is immutable. StringBuffer class is mutable.
2) String is slow and consumes more memory when you concat too many StringBuffer is fast and consumes less
strings because every time it creates new instance. memory when you cancat strings.
3) String class overrides the equals() method of Object class. So you can ‘ StringBuffer class doesn't override the
\ | compare the contents of two strings by equals() method. equals({) method of Object class.
e Java StringBuffer class is used to create mutable (modifiable

string. The StringBuffer class in java is same as String class except

it is mutable i.e. it can be changed.

Important Constructors of StringBuffer class

Constructor Description

StringBuffer() creates an empty string buffer with the initial capacity of 16.

StringBuffer(String str) creates a string buffer with the specified string.

StringBuffer(int capacity) creates an empty string buffer with the specified capacity as length.
Mutable string - A string that can be modified or changed is known

as mutable string. StringBuffer and StringBuilder classes are used

for creating mutable string.

57

StringBuffer append() method

class StringBufferExample{

public static void main{String args[}){
StringBuffer sb=new StringBuffer("Hello ");
sb.append("lava");//now original string is changed
System.out.printin(sb);//prints Hello Java

¥

3

58

StringBuffer insert() method

The insert() method inserts the given string with this string at the

given position.

class StringBufferExample2{

public static void main(String args[]1){
StringBuffer sb=new StringBuffer("Hello ");
sb.insert{1,"Java");//now original string is changed
System.out.printin(sb);//prints Hlavaello

¥

¥

59

StringBuffer replace() method
The replace() method replaces the given string from the specified
beginindex and endindex.

class StringBufferExample3{

public static void main{String args[]){
StringBuffer sb=new StringBuffer("Hello");
sb.replace(1,3,"Java");
System.out.printin(sb);//prints Hlavalo

¥

by

60

StringBuffer delete() method

The delete() method of StringBuffer class deletes the string from
the specified beginindex to endindex.

class StringBufferExample4{

public static void main(String args[1){
StringBuffer sb=new StringBuffer("Hello"};
sb.delete(1,3);
System.out.printin(sb);//prints Hlo

¥

by

61

StringBuffer reverse() method
The reverse() method of StringBuffer class reverses the current
string.

class StringBufferExampleS{

public static void main(String args[1){
StringBuffer sb=new StringBuffer("Hello"});
sb.reverse();
System.out.printin{sb);//prints olleH

¥

b

62

COLLECTIONS IN JAVA

BThe Collection in Java is a framework that provides an architecture to store and manipulate the
group of objects.

Blava Collections can achieve all the operations that you perform on a data such as searching,
sorting, insertion, manipulation, and deletion.

Blava Collection means a single unit of objects. Java Collection framework provides many interfaces
(Set, List, Queue, Deque) and classes (ArrayList, Vector, LinkedList, PriorityQueue,
HashSet, LinkedHashSet, TreeSet).

ElCollection in Java - Represents a single unit of objects, i.e., a group.
Biframework in Java

® |t provides readymade architecture.

® |t represents a set of classes and interfaces.

® |t is optional.
ECollection framework

EThe Collection framework represents a unified architecture for storing and manipulating a group of
objects. It has:

® Interfaces and its implementations, i.e., classes

® Algorithm

[V

Hierarchy of Collection Framework

Iterable

I interface
T class

4

implements

Collection

f extends

S

h

PriorityQuene

Deque B LinkedHashset

Ayt
-~

W Lokl e

ArtayDeqlie SortedSat

TreaSet

I

I.M"I

65

BThe java.util package contains all the classes and interfaces for the Collection framework.

[ICollection Interface

® The Collection interface is the interface which is implemented by all the classes in the collection
framework.

® |t declares the methods that every collection will have. In other words, we can say that the
Collection interface builds the foundation on which the collection framework depends.

® Some of the methods of Collection interface are Boolean add (Object obj), Boolean addAll (
Collection c), void clear(), etc. which are implemented by all the subclasses of Collection interface.

66

e List interface is the child interface of Collection interface.

|+ It inhibits a list type data structure in which we can store the
ordered collection of objects.

* It can have duplicate values.

* List interface is implemented by the classes ArraylList,
LinkedList, Vector, and Stack.

* To instantiate the List interface, we must use :

67

List <data-type> list1= new ArrayList();
List <data-type> list2 = new LinkedList();
List <data-type> list3 = new Vector();

List <data-type> list4 = new Stack();

BIThere are various methods in List interface that can be used to insert, delete, and access the
elements from the list.

EThe classes that implement the List interface are given below. ArrayList

The ArrayList class implements the List interface. It uses a dynamic array to store the duplicate
element of different data types.

68

e The Arraylist class maintains the insertion order and is non-
synchronized. The elements stored in the Arraylist class can be

randomly accessed. Consider the following example.

import java.util.*;
class TestlavaCollection1{
Qutput:

public static void main(String args[]){

ArrayList<String> list=new ArrayList<String=>();//Creating arraylist —
list.add("Ravi");//Adding object in arraylist
list.add("Vijay"); Ravi
list.add("Ravi");
list.add("Ajay");
//Traversing list through Iterator Ravi
Iterator itr=list.iterator();

while(itr.hasNext()){ J

System.out.printin(itr.next());
i
by
¥

69

BlJava ArrayList class uses a dynamic array for storing the elements.
Bt is like an array, but there is no size limit. We can add or remove elements anytime.

So, it is much more flexible than the traditional array. It is found in the java.util package. It is like
the Vector in C++.

BIThe ArraylList in Java can have the duplicate elements also. It implements the List interface so we
can use all the methods of List interface here.

BIThe ArrayList maintains the insertion order internally.

Bt inherits the AbstractList class and implements List interface.

BIThe important points about Java ArrayList class are:

® Java ArraylList class can contain duplicate elements.

® Java Arraylist class maintains insertion order.

® Java Arraylist class is non synchronized.

® Java ArrayList allows random access because array works at the index basis.

® In ArrayList, manipulation is little bit slower than the LinkedList in Java because a lot of shifting
needs to occur if any element is removed from the array list.

ArrayList Example

import java.util.™;
public class ArrayListExample1{
public static void main(String args{]){
ArrayList<String> list=new ArrayList<String=>();//Creating arraylist

list.add("Mango"};//Adding object in arraylist Output:
list.add("Apple");
list.add("Banana"); [Mango, Apple, Banana, Grapes]

list.add("Grapes");
//Printing the arraylist object
System.out.printin(list);

72

Iterating ArrayList using Iterator

import java.util.*;

public class ArrayListExample2{

public static void main(String args[1){
ArrayList<String> list=new ArrayList<String=>();//Creating arraylist
list.add("Mango");//Adding object in arraylist
list.add("Apple");
list.add("Banana");
list.add("Grapes");
//Traversing list through Iterator
Iterator itr=list.iterator();//getting the Iterator
while(itr.hasNext()){//check if iterator has the elements
System.out.printIn{itr.next());//printing the element and move to next
¥

¥

¥

Output:

Mango
Apple
Banana

Grapes

73

MODULE 4

CHAPTER 2

MULTITHREADED PROGRAMMING

JAVA is a multi-threaded programming language which means we can develop multi-

threaded program using Java.

A multi-threaded program contains two or more parts that can run concurrently and each

part can handle a different task at the same time making optimal use of the available resources
specially when your computer has multiple CPUs.

Each part of such program is called a thread. So, threads are lightweight processes within a

process.

Multiprocessing and multithreading, both are used to achieve multitasking But we use

multithreading than multiprocessing because threads share a common memory area.

They don't allocate separate memory area so saves memory, and context-switching

between the threads takes less time than process.

Java Multithreading is mostly used in games, animation etc..
A thread is a lightweight sub process, a smallest unit of processing.

It is a separate path of execution.

They are independent, if there occurs exception in one thread, it doesn't affect other

threads.

At least one process is required for each thread.

) .
Process 4 £ e
F Process 2
L4
Process 1
e o ?, N
5 i
i) S ———
Process 1 Process N
‘ Process 5 »
w _/ \\—/ 5
\ /
\ 4
% J

[] Advantages of Java Multithreading

Bt doesn't block the user because threads are independent and you can perform multiple
operations at same time.

RAYou can perform many operations together so it saves time.
BThreads are independent so it doesn't affect other threads if exception occur in a single thread

EINote: At a time one thread is executed only.

LIFE CYCLE OF THREAD

® Athread can be in one of the five states.

® According to sun, there is only 4 states in thread life cycle in java new, runnable, non-
runnable and terminated.

® There is no running state. But for better understanding the threads, we can explain it in the
5 states.

New

EIRunnable

BIRunning
ENon-Runnable (Blocked)
BITerminated

Life Cycle

ST

start() a'jj sleep() done, /o
complete, lock available,
resume(), notify() or notifyAll()

Runnable S

e Non Runnable
‘-*‘%\\
E’Jl » (Blocked)

sleep(), block on 1/0, wait

mn{)method for lock, suspend(), wait()

exits

or stop()

EINew - The thread is in new state if you create an instance of Thread class but before the
invocation of start() method.

EIRunnable - The thread is in runnable state after invocation of start() method, but the thread
scheduler has not selected it to be the running thread.

EIRunning - The thread is in running state if the thread scheduler has selected it.

EINon-Runnable (Blocked) - This is the state when the thread is still alive, but is currently not
eligible to run.

BITerminated - A thread is in terminated or dead state when its run() method exits.

BIA Running Thread transit to one of the non-runnable states, depending upon the circumstances.
® Sleeping: The Thread sleeps for the specified amount of time.
® Blocked for I/O: The Thread waits for a blocking operation to complete.
® Blocked for join completion: The Thread waits for completion of another Thread.
® Waiting for notification: The Thread waits for notification another Thread.

® Blocked for lock acquisition: The Thread waits to acquire the lock of an object.

BJVM executes the Thread, based on their priority and scheduling.

There are two ways to create a thread:
e By extending Thread class

e By implementing Runnable interface

Extending Thread class:
e Thread class provide constructors and methods to create and

perform operations on a thread.

e Thread class extends Object class and implements Runnable

interface.

10

Commonly used Constructors of Thread class:
e Thread()

e Thread(String name)

e Thread(Runnable r)

e Thread(Runnable r, String name)

11

BEIThread Methods - Following is the list of important methods available in the Thread
class.

® public void run() : is used to perform action for a thread.
® public void start() : starts the execution of the thread. JVM calls the run() method on the thread.

® public void sleep(long miliseconds) : Causes the currently executing thread to sleep (temporarily
cease execution) for the specified number of milliseconds.

® public void join() : waits for a thread to die.
® public int getPriority() : returns the priority of the thread.

® public int setPriority(int priority) : changes the priority of the thread.

12

® public String getName(): returns the name of the thread.

® public Thread currentThread() : returns the reference of currently executing thread.
® public int getld() : returns the id of the thread.

® public Thread.State getState() : returns the state of the thread.

® public boolean isAlive() : tests if the thread is alive.

® public void suspend() : is used to suspend the thread(depricated). ® public void resume() : is used
to resume the suspended thread

® public void stop() : is used to stop the thread(depricated).

® public boolean isDaemon() : tests if the thread is a daemon thread.

Thread.start() & Thread.run()
Bln Java’s multi-threading concept, start() and run() are the two most important methods.

® When a program calls the start() method, a new thread is created and then the run() method is
executed.

® But if we directly call the run() method then no new thread will be created and run() method will

be executed as a normal method call on the current calling thread itself and no multi-threading
will take place.

14

Let us understand it with an example:

class MyThread extends Thread {

public void run()
{ Output

System.out.printin("Current thread name: "

Output:
+ Thread.currentThread().getName());
System.out.println("run() method called"); Current thread name: Thread-@
} run() method called
}
class Xyz {
public static void main(String[] args)
{
MyThread t = new MyThread();
t.start();
t

}

15

start ()

BEwhen we call the start() method of our thread class instance, a new thread is created with
default name Thread-0 and then run() method is called and everything inside it is executed on
the newly created thread.

run ()

Bwhen we called the run() method of our MyThread class, no new thread is created and the
run() method is executed on the current thread i.e. main thread. Hence, no multi-threading took
place. The run() method is called as a normal function call.

16

Let us try to call run() method directly instead of start() method:

class MyThread extends Thread {

public void run()
{ Output

System.out.printIn("Current thread name: "
+ Thread.currentThread().getName());
System.out.println("run() method called"); l‘un() method called

Current thread name: main

}

}
class Xyz {

public static void main(String[] args)
{
MyThread t = new MyThread();
t.run();
}
}

Difference

Creates a new thread and the run() No new thread is created and the run()
method is executed on the newly method is executed on the calling
created thread. thread itself.

Can't be invoked more than one time Multiple invocation is possible
otherwise throws

java.lang.lllegalStateException

Defined in java.lang. Thread class. Defined in java.lang.Runnable interface
and must be overriden in the

implementing class.

18

Elmplementing Runnable interface:

® The Runnable interface should be implemented by any class whose instances are intended to be
executed by a thread.

® Runnable interface have only one method named run().
public void run(): is used to perform action for a thread.

Steps to create a new Thread using Runnable :

o Create a Runnable implementer and implement run() method.

o Instantiate Thread class and pass the implementer to the Thread, Thread has a constructor
which accepts Runnable instance.

O Invoke start() of Thread instance, start internally calls run() of the implementer. Invoking
start(), creates a new Thread which executes the code written in run().

19

Thread Example by implementing Runnable interface

class Multi3 implements Runnable{

public void run(}{
System.out.printin("thread is running...");

by

public static void main(String args[1){
Multi3 mi=new Multi3();

Thread t1 =new Thread(m1);
ti.start();

I

¥

Rutput:thread is running...

MAIN THREAD

BlEvery java program has a main method. The main method is the entry point to execute the
program.

[So, when the JVM starts the execution of a program, it creates a thread to run it and that thread
is known as the main thread.

BEach program must contain at least one thread whether we are creating any thread or not.
BIThe JVM provides a default thread in each program.

BIA program can’t run without a thread, so it requires at least one thread, and that thread is
known as the main thread.

21

If you ever tried to run a Java program with compilation errors you

would have seen the mentioning of main thread. Here is a simple

Java program that tries to call the non-existent getValue() method.

public class TestThread {
public static void main(String[]
TestThread t = new TestThread()
t.getValue();

}

args) {

J

Exception in thread "main" java.lang.Error: Unresolved compilation
The method getValue() is undefined for the type TestThread

As you can see in the error when the program is executed, main

thread starts running and that has encountered a compilation

problem.

22

Properties

e Itis the thread from which other
“child” threads will be spawned.

e Often, it must be the last
thread to finish execution
because it performs various

shutdown actions

JVM

start.

start.

For each program

A

Main Thread
start start
¥ '
Child Child

ThreadA

ThreadB

start

Child
ThreadC

Other Daemon
Threads
(eg. Garbage
Collector)

23

[THow to control Main thread

The main thread is created automatically when our program is started.

To control it we must obtain a reference to it.

This can be done by calling the method currentThread() which is present in Thread class.

This method returns a reference to the thread on which it is called.

The default priority of Main thread is 5 and for all remaining user threads priority will be

inherited from parent to child.

24

class MainThread

public static void main(String args[])
{
Thread t = Thread.currentThread ();
System.out.printin ("Current Thread : " +1);
System.out.println ("Name : " + t.getName ());
System.out.printin (" ");
t.setName ("New Thread");
System.out.printin ("After changing name");
System.out.println ("Current Thread : " + t);
System.out.println ("Name : " + t.getName ());
System.out.printin (" ");
System.out.println ("This thread prints first 10 numbers");
try
{
for (int i=1; i<=10;i++)
{
System.out.print{i);
System.out.print(" ");
Thread.sleep{1000);
14
}
catch (InterruptedException e)
{
System.out.printin(e);

}

Output

Current Thread :
Name : main

After changing name
Current Thread :
Name : New Thread

This thread prints first 10 numbers
1824354 58 67859516

Thread[main,5,main]

Thread[New Thread,5,main]

25

The program first creates a Thread object called 't' and assigns the reference of current thread
(main thread) to it. So now main thread can be accessed via Thread object 't'.

This is done with the help of currentThread() method of Thread class which return a reference to
the current running thread.

The Thread object 't' is then printed as a result of which you see the output Current Thread :
Thread [main,5,main].

The first value in the square brackets of this output indicates the name of the thread, the name
of the group to which the thread belongs.

The program then prints the name of the thread with the help of getName() method.
The name of the thread is changed with the help of setName() method.

The thread and thread name is then again printed.

Then the thread performs the operation of printing first 10 numbers.

When you run the program you will see that the system wait for sometime after printing each
number.

This is caused by the statement Thread.sleep (1000).

class ThreadA extends Thread class ThreadC extends Thread

ThreadC k=5

{ {
public void run() public void run()
{ {
for (int i=1;i<=5;i++) for (int k=1;k<=5;k++)
{ {
System.out.printin(“ThreadA i="+(-1*i)); System.out.printin(“ThreadC k="+(2%(k-1)));
}
} ot o
System.out.printin{“Exiting ThreadA”);) System.outpritn MU THreadC);
}
}
} class MultiThreadDemo
class ThreadB extends Thread {
{ public static void main (String args [])
public void run() {
{ ThreadA t1 = new ThreadA();
for (int j=1;j<=5;j++) ThreadB t2 = new ThreadB();
{ ThreadC t3 = new Thread(();
System.out.printin(“ThreadB j="+(2%j)); t1.start();
} t2.start();
System.out.printin{“Exiting Thread8”); t3.start();
1 ; } } } e
Output
ThreadA i=-1 ThreadA i=-4
ThreadB j=2 ThreadB j=8
ThreadC k=1 ThreadC k=7
) ThreadA i=-5
ThreadA i=-2
ThreadB j=10
ThreadB j=4
ThreadC k=9
ThreadC k=3 Exiting ThreadA
ThreadA i=-3 Exiting ThreadB
ThreadB j=6 Exiting ThreadC

29

THREAD SYNCHRONIZATION

® When we start two or more threads within a program, there may be a situation when multiple
threads try to access the same resource and finally they can produce unforeseen result due to

concurrency issues.

® For example, if multiple threads try to write within a same file then they may corrupt the data
because one of the threads can override data or while one thread is opening the same file at the
same time another thread might be closing the same file.

30

® So there is a need to synchronize the action of multiple threads and make sure that only one
thread can access the resource at a given point in time.

Following is the general form of the synchronized statement :

Syntax synchronized(object identifier) {
// Access shared variables and other shared resources

}

RlUnderstanding the problem without Synchronization

® In this example, we are not using synchronization and creating multiple threads that are accessing
display method and produce the random output.

31

class First { public class Syncro
public void display({String msg) {
{ I ——— public static void main (String[] args)
try { {
Thread.sleep(1000); First fnew = new First();
} Second ss = new Second(fnew, "welcome");
catch(interruptedException) { Second ss1= new Second{fnew,"new");
] e.printStackTrace(); Second ss2 = new Second(fnew, "programmer");
System.out.printin ("]"); }}
}
}
class-SEcarid extendsIhreat In the above program, object fnew of class First is shared by
[S:it:;:fo?;g' all the three running threads(ss, ss1 and ss2) to call the
Second (First fp,String str) { shared method(void display). Hence the result is
fobj = fp;
e nonsynchronized and such situation is called Race
start(); condition OuTPUT:
}
public void run{) { [welcome [new [programmer]
fobj.display(msg);]
}
} =]

EISynchronized Keyword

® To synchronize above program, we must synchronize access to the shared display() method,
making it available to only one thread at a time. This is done by using keyword synchronized with
display() method.

® With a synchronized method, the lock is obtained for the duration of the entire method.

® So if you want to lock the whole object, use a synchronized method synchronized void display
(String msg)

Example : implementation of synchronized method

3B

class First
{ public class MyThread
synchronized public void display(String msg) { {
f:(;tfm'om'prmt([Pl public static void main (String[] args)
Thread.sleep(1000); {

} First fnew = new First();
catch(InterruptedException e) { Second ss = new Second(fnew, "welcome");
e.printStackTrace(); Second ss1= new Second(fnew,"new");

} Second ss2 = new Second(fnew, "programmer");
System.out.printin ("]"); }
’ }
}
class Second extends Thread {
String msg;
First fobj; Ou TRPUT.
Second (First fp,String str) {
fobj = fp; [welcome]
msg = str;
Sta,g,c(); [programmer]
}
public void run() { [new]
fobj.display{msg);
}
B } 34

Using Synchronized block

® |f we want to synchronize access to an object of a class or only a part of a method to be
synchronized then we can use synchronized block for it.

® |t is capable to make any part of the object and method synchronized.

® With synchronized blocks we can specify exactly when the lock is needed. If you want to keep
other parts of the object accessible to other threads, use synchronized block. Example

® In this example, we are using synchronized block that will make the display method available for
single thread at a time.

35

class First {
public void display(String msg) {
System.out.print ("["+msg);
try {
Thread.sleep(1000);
}
catch(InterruptedException e) {
e.printStackTrace();
}
System.out.println ("]");
}
}
class Second extends Thread {
String msg;
First fobj;
Second (First fp,String str) {
fobj = fp;
msg = str;
start();
}
public void run() {

synchronized(fobj) //Synchronized block

{
fobj.display(msg);

}
}

public class MyThread
{

public static void main (String[] args)

{

First fnew = new First();

Second ss = new Second(fnew, "welcome");

Second ss1=new Second (fnew,"new");

Second ss2 = new Second(fnew, "programmer");

}
}

Output:

[welcome]
[new]

[programmer]

36

® In Java, synchronized keyword causes a performance cost.

Which is more preferred - Synchronized method or Synchronized block?

® A synchronized method in Java is very slow and can degrade performance.

® So we must use synchronization keyword in java when it is necessary else, we should use Java
synchronized block that is used for synchronizing critical section only.

37

® The suspend() method of thread class puts the thread from running to waiting state.

® This method is used if you want to stop the thread execution and start it again when a certain

event occurs.

® This method allows a thread to temporarily cease execution.

® The suspended thread can be resumed

Syntax public final void suspend()

using the resume() method.

38

Example

public class JavaSuspendExp extends Thread
{
public void run()
{
for(inti=1; i<5; i++)
{
try
{
// thread to sleep for 500 milliseconds
sleep(500);
System.out.printin(Thread.currentThread().getName());
Ycatch(InterruptedException e){System.out.printin(e);}
System.out.printIn(i);

public static void main(String args[])

{

// creating three threads

JavaSuspendExp tl1=new JavaSuspendExp ();
JavaSuspendExp t2=new JavaSuspendExp ();
JavaSuspendExp t3=new JavaSuspendExp ();
/f call run() method

ti.start(};

t2.start();

/[suspend t2 thread

t2.suspend();

/f call run() method

t3.start();

39

Output
Thread-2

1
Thread-2
1
Thread-@
2
Thread-2
2
Thread-@
3
Thread-2
3
Thread-@
4
Thread-2
1

40

Thread resume() method

e The resume() method of thread class is only used with suspend()

method.

e This method is used to resume a thread which was suspended

using suspend() method.

e This method allows the suspended thread to start again.

Syntax

public final void resume()

41

Example

public class JavaResumeExp extends Thread public static void main{String args[])
{ {
public void run() // creating three threads
{ JavaResumeExp t1=new JavaResumeExp ();
for(inti=1; i<5; i++) JavaResumeExp t2=new JavaResumeExp ();
{ JavaResumeExp t3=new JavaResumeExp ();
try /f call run() method
{ ti.start();
/[thread to sleep for 500 milliseconds t2.start();
sleep(500); t2.suspend(); // suspend t2 thread
System.out.printin(Thread.currentThread().getName()); /[call run{) method
Tcatch(InterruptedException e){System.out.printin{e);} t3.start();
System.out.printIn(i); t2.resume(); // resume t2 thread
3, ¥
¥
42
Output Thread-@ 3
1 Thread-2
Thread-2 5
1
Thread-1
Thread-1
5 3
Thread-@ Thread-@
2 4
Thread-2 Thread-2
2 4
et Thread-1
2
4
Thread-@

43

e The stop() method of thread class terminates the thread

execution.

* Once a thread is stopped, it cannot be restarted by start()

method.

Syntax
public final void stop()

public final void stop(Throwable obj)

44

Example
public class JavaStopExp extends Thread public static void main{String args([])
{ {
public void run() /[creating three threads
t JavaStopExp t1=new JavaStopExp ();
forfint ISt dsovker) JavaStopExp t2=new JavaStopExp ();
¢ JavaStopExp t3=new JavaStopExp ();
t{:ry [f call run{) method
// thread to sleep for 500 milliseconds EEetEn
sleep(500); t2.start();
System.out.printin(Thread.currentThread().getName()); [/ stop t3 thread
Jcatch(InterruptedException e){System.out.printin(e);} t3.stop();
System.out.printin(i}; System.out.printin{"Thread t3 is stopped"};
i ¥
¥ ¥

MODULE

45

4

EVENT

® Change in the state of an object is known as event i.e. event describes the change in state of
source.

® Events are generated as result of user interaction with the graphical user interface components. |

® For example, clicking on a button, moving the mouse, entering a character through keyboard,
selecting an item from list, scrolling the page are the activities that causes an event to happen.

Types of Event
The events can be broadly classified into two categories:

Tl

oreground Events
* Those events which require the direct interaction of user. They are generated as consequences

of a person interacting with the graphical components in Graphical User Interface. For example,
clicking on a button, moving the mouse, entering a character through keyboard, selecting an item

from list, scrolling the page etc.

[on)

ackground Events

¢ Those events that require the interaction of end user are known as background events.
Operating system interrupts, hardware or software failure, timer expires, an operation
completion are the example of background events.

EVENTHANDLING

® Event Handling is the mechanism that controls the event and decides what should happen if an
event occurs.

® This mechanism have the code which is known as event handler that is executed when an event
occurs.

® Java Uses the Delegation Event Model to handle the events.
® This model defines the standard mechanism to generate and handle the events.

® Let's have a brief introduction to this model.

| The Delegation Event Model has the following key participants namely:

Source - The source is an object on which event occurs. Source is responsible for providing
information of the occurred event to it's handler. Java provide as with classes for source object.

Listener - It is also known as event handler. Listener is responsible for generating response to an
event. From java implementation point of view the listener is also an object. Listener waits until it
receives an event. Once the event is received , the listener process the event and then returns.

® The benefit of this approach is that the user interface logic is completely separated from the logic
that generates the event.

® The user interface element is able to delegate the processing of an event to the separate piece of
code.

® In this model ,Listener needs to be registered with the source object so that the listener can
receive the event notification.

® This is an efficient way of handling the event because the event notifications are sent only to
those listener that want to receive them.

How Events are handled
e A source generates an Event and send it to one or more listeners

registered with the source.

| * Once event is received by the listener, they process the event and

then return.

e Events are supported by a number of Java packages, like java.util,

java.awt and java.awt.event

event source registered event listener

Event classes and interface

Event Classes

ActionEvent

MouseEvent

KeyEvent

ItemEvent

TextEvent

MouseWheelEvent

Description

generated when button is pressed, menu-item is
selected, list-item is double clicked

generated when mouse is dragged,
moved clicked pressed or released and also when it
enters or exit a component

generated when input is received from keyboard
generated when check-box or list item is clicked

generated when value of textarea or textfield is
changed

generated when mouse wheel is moved

Listener Interface

ActionListener

MouseListener

KeyListener

[temListener

TextListener

MouseWheelListener

WindowEvent

ComponentEvent

ContainerEvent

AdjustmentEvent

FocusEvent

generated when window is activated, deactivated,
deiconified, iconified, opened or closed

generated when component is hidden, moved, resized
or set visible

generated when component is added or removed from
container

generated when scroll bar is manipulated

generated when component gains or loses keyboard
focus

WindowListener

ComponentEventListener

ContainerListener

AdjustmentListener

FocusListener

Steps to handle events:

Implement appropriate interface in the class.

Register the component with the listener.

[ISteps involved in event handling
RThe User clicks the button and the event is generated.

EINow the object of concerned event class is created automatically and information about the
source and the event get populated with in same object.

EIEvent object is forwarded to the method of registered listener class.

BEThe method is now get executed and returns.

10

Points to remember about listener

® In order to design a listener class we have to develop some listener interfaces.

® These Listener interfaces forecast some public abstract callback methods which must be
implemented by the listener class.

® |f we do not implement the predefined interfaces then your class can not act as a listener class for a

source object.

SOURCES OF EVENT

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.
Choice Generates item events when the choice is changed.

List Generates action events when an item is doubleclicked; generates item

events when an item is selected or deselected.

Menu item

Generates action events when a menu item is selected; generates item
events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.
Text components Generates text events when the user enters a character.
Window Generates window events when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

EVENT LISTENER INTERFACES

Interface

Description

ActionListener

Defines one method to receive action events.

AdjustmentListener

Defines one method to receive adjustment events.
4

ComponentListener

Defines four methods to recognize when a component is hidden, moved,
resized, or shown.

ConrtainerListener

Defines two methods to recognize when a component is added to or
removed {rom a container.

FocusListener Defines two methods to recognize when a component gains or loses
keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed, released, or typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters a

component, exits a component, is pressed, or is released.

MouseMotionListener

Defines two methods to recognize when the mouse is dragged or moved.

MouseWheelListener

Defines one method to recognize when the mouse wheel is moved.

TextListener

Defines one method to recognize when a text value changes.

WindowFocusListener

Defines two methods to recognize when a window gains or loses input focus.

WindowListener

Defines seven methods to recognize when a window is activated, closed,
deactivated, deiconified, iconified, opened, or quit.

13

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class MyApplet extends JApplet implements Keylistener

{

JTextField jtf;
JLabel label;
public void init()

{

¥

public void keyPressed(KeyEvent ke){}
public void keyReleased(KeyEvent ke){}
public void keyTyped(KeyEvent ke)

{

setSize(600,300);

setlayout(new FlowLayout())};
jtf = new JTextField(20);

add(jtf);

jtf.addKeyListener(this);

label = new JLabel();
add(label);

label.setText(String.valueOf(ke.getKeyChar()));

Key Event Handling

Initial output of the program

Applet

Applet started

14

After the user enters a character into the text field, the same
character is displayed in the label beside the text field as shown in
the below image:

MODULE 5

Graphical User Interface &
support of Java

flexible GUI components than AWT.

® Swing provides the look and feel of modern Java GUI.

® Swing library is an official Java GUI tool kit released by Sun Microsystems.
® Itis used to create graphical user interface with Java.

® Swing classes are defined in javax.swing package and its subpackages.

® Java Swing provides platform-independent and lightweight components.

2

Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-based applications.

It is built on the top of AWT (Abstract Windowing Toolkit) APl and entirely written in java

JFC

¢ The Java Foundation Classes (JFC) are a set of GUI components which simplify the development of
desktop applications.

BIThe javax.swing package provides classes for java swing APl such as JButton, JTextField,
JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Features of Swing

Platform Inr'lplnpnrlpnf-

® Iltis platform independent, the swing components that are used to build the program are not
platform specific.

® It can be used at any platform and anywhere.

iabhtvaa
t

Lig oht:
e el
® Swing components are lightweight which helps in creating the Ul lighter.

® Swings component allows it to plug into the operating system user interface framework that
includes the mappings for screens or device and other user interactions like key press and mouse
movements.

Plugging:

— ® It has a powerful component that can be extended to provide the support for the user
interface that helps in good look and feel to the application.

® It refers to the highly modular-based architecture that allows it to plug into other customized
implementations and framework for user interfaces.

Manageable: It is easy to manage and configure. Its mechanism and composition pattern allows
changing the settings at run time as well. The uniform changes can be provided to the user
interface without doing any changes to application code.

MVC:

® They mainly follows the concept of MVC that is Model View
Controller.

® With the help of this, we can do the changes in one component without impacting or touching
other components.

® |tis known as loosely coupled architecture as well.

Customizable:
® Swing controls can be easily customized. It can be changed and the visual appearance of the
swing component application is independent of its internal representation.

Rich Controls :

® Swing provides a rich set of advanced controls like
Tree, TabbedPane, slider, colorpicker, and table controls. 6

Difference between AWT and Swing

No. Java AWT Java Swing

1) AWT components are platform-dependent. Java swing components are platform-
independent.

2) A\b}T components are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look and feel. Swing supports pluggable look and feel.

4; | AWF provides less components than Swing. | Swing provides more powerful components

| such as tables, lists, scrollpanes, colorchooser,

‘ tabbedpane etc.

5) AWT doesn't follows MVC{Model View Controller) where model Swing follows MVC.
represents data, view represents presentation and controller acts as an
interface between model and view.

Hierarchy of Java Swing classes

T

Component

|

l Container | ‘ JComponent ‘ I1able
IComboBox

‘ Window | Panel

I I
Applet

‘ Frame ‘ ‘ Dialog |

| Jslider

O CE

The Model-View-Controller Architecture

® Swing uses the model-view-controller architecture (MVC) as the fundamental design behind each
of its components

® Essentially, MVC breaks GUI components into three elements. Each of these elements plays a
crucial role in how the component behaves.

® The Model-View-Controller is a well known software architectural pattern ideal to implement
user interfaces on computers by dividing an application intro three interconnected parts

® Main goal of Model-View-Controller, also known as MVC, is to separate internal representations
of an application from the ways information are presented to the user.

® Initially, MVC was designed for desktop GUI applications but it’s quickly become an extremely
popular pattern for designing web applications too.

® MVC pattern has the three components :

Model that manages data, logic and rules of the application View that is used to present data
to user

Controller that accepts input from the user and converts it to commands for the Model or View.

10

e the MVC pattern defines the interactions between these three

components like you can see in the following figure :

(MODEL W
UPDATES MANIPULATES
VIEW CONTROLLER
\
) «/
$ 0‘9
N /
USER

11

e The Model receives commands and data from the Controller. It

stores these data and updates the View.
e The View lets to present data provided by the Model to the user.

e The Controller accepts inputs from the user and converts it to

commands for the Model or the View.

COMPONENTS & CONTAINERS

® A component is an independent visual control, such as a push button or slider.

® A container holds a group of components. Thus, a container is a special type of component that is
designed to hold other components.

® Swing components inherit from the javax.Swing.JComponent class, which is the root of the Swing
component hierarchy.

13

COMPONENTS

o Swing components are derived from the JComponent class.

o JComponent provides the functionality that is common to all components. For example,
JComponent supports the pluggable look and feel.

o JComponent inherits the AWT classes Container and Component. Thus, a Swing component
is built on and compatible with an AWT component.

o All of Swing’s components are represented by classes defined within the package
javax.swing.

o The following table shows the class names for Swing components

e JApplet

e JColorChooser * JTogglebutton
e JDialog e JViewport
e JFrame e JButton

e JLayeredPane e JComboBox

e JMenultem e JEditorPane

¢ JPopupMenu ¢ JInternalFrame

¢ JRootPane e JList
o JSlider ¢ JOptionPane
e JTable ¢ JProgressBar
15
¢ Notice that all component classes begin with the letter J.

o For example, the class for a label is JLabel; the class for a push button is JButton; and the
class for a scroll bar is JScrollBar

CONTAINERS

® Swing defines two types of containers. The first are top-level containers: JFrame, JApplet,
JWindow, and JDialog. These containers do not inherit JComponent. They inherit the AWT classes
Component and Container.

® The second type container are lightweight and the top-level containers are heavyweight. This
makes the top-level containers a special case in the Swing component library.

In Java, Containers are divided into two types as shown below:

Container

v

Y

o Examples: JDialog, -
JFrame, JApplet

* inherited by Component
and Container of AWT

e Other confainers cannot
holdit.

e Contfainersare

\ Heavyweight. / \

Gp-level Container \ /Lightweight Container \

Example: JPanel
They inherit
JComponentclass
Used as general —
purpose container
Used to keep and
organize related

componenfstogether /

17

Following is the list of commonly used containers while designed
GUI using SWING.

Panel @

component can be placed, including other panels.

Sr.No. Container & Description

Frame @

- A JFrame is a top-level window with a title and a border.
Window &

3

A JWindow object is a top-level window with no borders and no menubar.

1 JPanel is the simplest container. It provides space in which any other

18

Swing Example : A window on the screen.

import javax.swing.JFrame;

import javax.swing.SwingUtilities; S
utpu

public class Example extends JFrame {

public Example() {
setTitle("Simple example");
setSize (306, 200);
setlocationRelativeTo{null);
setDetaultCloseOperation(EXIT_ON_CLOSE);

¥

public static void main(String[] args) { S |
Example ex = new Example();
ex.setVisible(true);

¥

[

19

EVENT HANDLING IN SWINGS

® The functionality of Event Handling is what is the further step if an action performed.

® Java foundation introduced “Delegation Event Model” i.e describes how to generate and control
the events.

® The key elements of the Delegation Event Model are as source and listeners.
® The listener should have registered on source for the purpose of alert notifications.

® All GUI applications are event-driven

20

[] Java Swing event object

Y For example, when we click on the button or select an item from a list.

® There are several types of events, including ActionEvent, TextEvent, FocusEvent, and
ComponentEvent.

® Each of them is created under specific conditions.

® An event object holds information about an event that has occurred.

21

SWING LAYOUT MANAGERS

o Layout refers to the arrangement of components within the container.
S Layout is placing the components at a particular position within the container. The task of
laying out the controls is done automatically by the Layout Manager.

* The layout manager automatically positions all the components within the container.

* Even if you do not use the layout manager, the components are still positioned by the

default layout manager. It is possible to lay out the controls by hand, however, it becomes very
difficult

22

* Java provides various layout managers to position the controls.
Properties like size, shape, and arrangement varies from one layout

manager to the other.

* There are following classes that represents the layout managers:

java.awt.BorderLayout
java.awt.FlowLayout
java.awt.GridLayout
java.awt.CardLayout
java.awt.GridBaglayout
javax.swing.BoxLayout
javax.swing.GrouplLayout
javax.swing.ScrollPanelayout

iavax swing. S
“ \C FAYES } L L ~

| o
J v a7z wWitlts.

23

BorderLayout

NORTH

WEST CENTER EAST

SOUTH

GridLayout
B o L] |
2 3
5 6
8 q

24

FlowlLayout BoxLayout

r@ (== =)
Blittar 1 Buttan 2 Buttori 3 ‘Bulloi'4 Buttan &
25
CardLayout Grouplayout
GroupLayoutExample
Button One Button Two

Button Three

26

Example of JButton
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
public class testswing extends JFrame

{

testswing()

{
JButton btl = new JButton("Yes™);
JButton bt2 = new JButton("No™);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)

setlLayout(new FlowLayout());
setSize(
add(bt1);
add(bt2);

setVisible(
3

public static void main(String[] args)
{

new testswing();

[T

[[2]

27

Example of JTextField

import javax.swing.¥*;

import java.awt.event.*;

import java.awt.*;

public class MyTextField extends JFrame

{
public MyTextField()

{
JTextField jtf = new JTextField(
add(jtf);
setlLayout(new FlowlLayout());
setDefaultCloseOperation(JFrame.EXIT_ON CLOSE);

b

public static void main(String[] args)

{
new MyTextField();

=

(50, S|

%studylonighﬁ

28

Example of Jlabel - Itis used for placing text in a box

import javax.swing.¥;
class SlLabelDemol

£ - —_— e ——
5 = = = = |#] studytonight ==> Label Di = a X
public static void main(String args[]) l I e
{
JFrame label f= new JFrame(“studytonight ==> Label Demo™); Welcorme to stisdytonightcom

JLabel label 11,1abel 12;

How are You?

label 11=new JLabel("Welcome to studytonight.com™);

label 11.setBounds(58,50, 208

label 12=new JLabel("How are You?");
label 12.setBounds(58, 260

label f.add(label 11);
label f.add(label 12);
label f.setSize(308,300);
label f.setlayout(null);
label f.setVisible(true);
¥

MODULE 5

CHAPTER 2
IDBC

o

Java DataBase Connectivity (JDBC)

RDBC stands for Java Database Connectivity, which is a standard Java API for database-
independent connectivity between the Java programming language and a wide range of
databases.

BIThe JDBC library includes APIs for each of the tasks mentioned below that are commonly
associated with database usage.

® Making a connection to a database
® Creating SQL or MySQL statements
® Executing SQL or MySQL queries in the database

® Viewing & Modifying the resulting records

RDBC Architecture
BDBC Architecture consists of two layers

® JDBC API: This provides the application-to-JDBC Manager connection.

¢ JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

BAThe JDBC API uses a driver manager and database-specific drivers to provide transparent
connectivity to heterogeneous databases.

BThe JDBC driver manager ensures that the correct driver is used to access each data source.

¢ Following is the architectural diagram , Which shows the location of

the driver manager with respect to the JDBC drivers and the Java

application

There are 5 steps to connect any java application with the

database using JDBC. These steps are as follows:
1. Register the Driver class
2. Create connection
3. Create statement
4 . Execute queries

5. Close connection

EThe forName() method is used to register the driver class.

BThe getConnection() method of DriverManager class is used to establish connection with the
database

EThe createStatement() method of Connection interface is used to create statement. The object of
statement is responsible to execute queries with the database.

BAThe executeQuery() method of Statement interface is used to execute queries to the database.
This method returns the object of ResultSet that can be used to get all the records of a table.

BBy closing connection object statement and ResultSet will be closed automatically. The close()
method of Connection interface is used to close the connection.

Java Database Connectivity with MySQl
y vviciiil 1vi y ~ A
® To connect Java application with the MySQL database, we need to follow 5 following steps.

® In this example we are using MySq| as the database. So we need to know following informations
for the mysql database:

1. Driver class: The driver class for the mysql database is
com.mysql.jdbc.Driver.

2. Connection URL: The connection URL for the mysql database is
jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql is the database, localhost is the

server name on which mysql is running, we may also use IP address, 3306 is the port number
and sonoo is the database name. We may use any database, in such case, we need to replace
the sonoo with our database name.

3. Username: The default username for the mysql database is root.
4. Ppassword: It is the password given by the user at the time of installing the mysql database. In
this example, we are going to use root as the password.
Bllet's first create a table in the mysql database, but before creating table, we need to create

database first.

create database sonoo; use sonoo;

create table emp(id int(10),name varchar(40),age int(3));

Example to Connect Java Application with mysqgl database

import java.sql.™;

class MysqlCon{
public static void main(String args[1){ This example will

try{ fetch all the records of

Class.forName("com.mysql.jdbc.Driver");
i i i emp table.
Connection con=DriverManager.getConnection(

"jdbc:mysql://localhost:3306/sonoo","root","root");

//here sonoco is database name, root is username and password

Statement stmt=con.createStatement(};

ResultSet rs=stmt.executeQuery("select * from emp"};

while(rs.next())

System.out.printin(rs.getInt(1)+" "+rs.getString{2)+" "+rs.getString(3));
con.close();

Ycatch{Exception e){ System.out.printin{e}; >

¥

¥

create database SampleDB;

use SampleDB;

CREATE TABLE "users’ (
‘user_id" int(11) NOT NULL AUTO_INCREMENT,
‘username’ varchar(45) NOT NULL,
‘password’ varchar(45) NOT NULL,
“fullname’ varchar(45) NOT NULL,
‘email” varchar(45) NOT NULL,
PRIMARY KEY (‘user_id’)

);
10

String dbURL = "jdbc:mysql://localhost:3306/sampledb";
String username = "root";
String password = "secret";

try {

Connection conn = DriverManager.getConnection(dbURL, username,
password);

if (conn !=null) {
System.out.printin("Connected");

}
} catch (SQLExceptionex)

{

ex.printStackTrace();

}

* Once the connection was established, we have a Connection object
which can be used to create statements in order to execute SQL
gueries.

* In the above code, we have to close the connection explicitly after
finish working with the database: conn.close();

BINSERT Statement Example
Let’s write code to insert a new record into the table Users with following details:

username: bill password: secretpass
fullname: Bill Gates email:
bill.gates@microsoft.com

String sql = "INSERT INTO Users (username, password, fullname, email) VALUES (?, ?, ?, ?)";
PreparedStatement statement = conn.prepareStatement(sql); statement.setString(1,
"bill"); statement.setString(2, "secretpass"); statement.setString(3, "Bill Gates");
statement.setString(4, "bill.gates@microsoft.com"); int rowslnserted =
statement.executeUpdate(); if (rowslnserted > 0) {

System.out.printIn("A new user was inserted successfully!");

}

SELECT Statement Example

String sql = "SELECT * FROM Users”;

Statement statement = conn.createStatement();
ResultSet result = statement.executeQuery(sqgl);

int count = @;

while (result.next(}){
String name = result.getString(2);
String pass = result.getString(3);
String fullname = result.getString(“fullname");
String email = result.getString(“"email™);

String output = "User #%d: ¥s - ¥s - %s - ¥s";
System.out.println(String.format(output, ++count, name, pass, fullname, email));

Output

User #1: bill - secretpass - Bill Gates - bill.gates@microsoft.com

14

UPDATE Statement Example

String sql = "UPDATE Users SET password=?, fullname=?, email=? WHERE username=2";

PreparedStatement statement = conn.prepareStatement(sql);
statement.setString(l, “123456738%");
statement.setString(2, "William Henry Bill Gates");
statement.setString(3, "bill.gates@microsoft.com");
statement.setString(4, “bill");

int rowsUpdated = statement.executeUpdate();
if (rowsUpdated > 8) {

System.out.println("An existing user was updated successfully!");
b

15

DELETE Statement Example

¢ The following code snippet will delete a record whose username

field contains “bill”

String sql = "DELETE FROM Users WHERE username=2";

PreparedStatement statement = conn.prepareStatement(sql);
statement.setString(1, “bill");

int rowsDeleted = statement.executeUpdate();
if (rowsDeleted > @) {

System.out.println(“A user was deleted successfully!");
¥

16

